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Executive summary
This report examines the feasibility and potential value of 
longitudinal population health studies (LPS) to address the 
climate-health research challenge. The term LPS embraces 
a variety of study-designs, including cohorts, panel surveys 
and biobanks. Collectively, these provide information ranging 
in scale from molecular-level biomarkers to population-
wide social, environmental and health outcome data. They 
have a global reach, albeit with under-representation of low 
and middle income countries (LMICs) whose populations 
are among the most vulnerable to the impacts of climate 
on population health. Climate data exist in a range of 
formats, including direct measurements of key climate 
variables (principally temperature and precipitation) from 
networks of weather stations and a variety of gridded data 
products derived from statistical and physics-based models, 
some of which are updated in near real-time. Our central 
proposition is that there is a clear and increasingly urgent 
need to combine health and climate data to better effect 
than is currently the case by stimulating closer collaboration 
between the two research communities.

In the remainder of the report, we first ask what data and 
methods are required to capture climate exposures and their 
health effects? We then consider how existing data sources 
and methods can best be used for this purpose and what 
changes could be implemented in new data collections. 
Finally, we offer conclusions and recommendations for how 
an ambitious climate and health research strategy, and the 
data to support it, could capitalise and improve upon existing 
datasets.

What data and methods are required 
to capture climate exposures and 
their health effects?
The climate exhibits variability across a wide range of 
temporal and spatial scales, from hours to centuries and 
from streets to continents. Climate can affect health and 
its upstream determinants across the full range of eco-
epidemiological levels of organisation, from the molecular 
to the individual, community and population levels. Thus, 
research at the climate-health interface requires a multi-
scale, multi-variate and multi-disciplinary approach: different 
aspects of climate affect different health outcomes both 
directly and, indirectly, via a combination of biological, 
environmental and socioeconomic factors.

These multiple scales of variation determine the structure of 
the data required for a comprehensive study of climate and 
health interactions. They also offer opportunities to build 
a deep knowledge of climate’s role as a driver of health 
outcomes by adopting a whole-system approach, using 
evidence from multiple sites and across different timescales 
to capture the extent and magnitude of the climate’s impact 
on health outcomes, corroborate findings, mitigate problems 
of inadequate data and support practical adaptation and 
resilience.
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How can existing data sources and 
methods best be used?
There is considerable potential for combining data from 
existing longitudinal population studies with existing climate 
data and data products for two purposes: 1) exploratory, 
hypothesis-generating research; 2) identification of the 
most suitable sites for the design and execution of new, 
confirmatory and in-depth studies focused on specific 
scientific hypotheses. 

These aims can best be achieved through LPS that are both 
large (to achieve statistical precision) and geographically 
extensive (to span a wide range of climate exposures and 
capture their full variability). 

The need for new studies, or for introducing changes in data 
collection protocols of existing LPS, follows primarily from 
the mismatch between study-designs from the two domains, 
especially with regard to their temporal and spatial coverage. 
Most existing longitudinal population studies currently collect 
data from individual participants at time-intervals of a year 
or more, whereas many of the most important climate-
related exposures that threaten population health occur 
at seasonal or higher time-frequencies. Conversely, most 
climate data, i.e. direct measurements of climate variables 
such as temperature or precipitation, are collected at high 
frequencies in near-real-time but from spatially sparse 
networks of weather stations. To address this challenge, 
the epidemiological community has defaulted to using the 
outputs of statistical or physics-based models (including 
remote sensing and reanalysis) which may be combined 
with station data. These data products may have improved 
spatial coverage (including global) and resolution, and are 
often more readily accessible to researchers. However, their 
use in research is often undertaken without consideration of 
their inherent uncertainty or suitability for the specific health 
research question or operational function under investigation.

Moreover, epidemiological modelling usually employs 
average or accumulated values as covariates (such as 
daily or monthly average temperature or accumulated 
precipitation), which can mask many of the exposures 
most closely related to health outcomes, such as extreme 
weather events or seasonality (depending on the averaging 
period). Close collaboration between epidemiologists and 
climate scientists is needed to construct climate metrics 
that reflect those aspects of weather and climate most 
relevant for particular health impacts, and to reach a shared 
understanding of when and why existing data products are 
inadequate for the task in hand.

Novel study-designs and statistical methods will be needed 
to enable studies to synthesise information from multiple 
sources that record health and climate data at different 
spatial and/or temporal resolutions. For these reasons, it 
is essential that each such study be conducted from the 
outset by teams whose expertise spans the climate, health, 
environmental and statistical sciences. This would be greatly 
facilitated by the establishment of a multi-disciplinary centre 
of excellence in climate-health research with a global reach 
and a focus on policy-directed research questions.
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Conclusions
There are opportunities to leverage both the general 
framework of longitudinal population studies and the 
information from existing LPS, which collectively have a 
global reach and provide multidimensional data from micro 
(subcellular) to macro (socioeconomic) levels, for climate-
health research. However, to realise fully these opportunities 
require further investment to understand what changes can 
be made to existing data collections and how new LPS 
should be designed for better alignment between the spatial 
and temporal scales of the climate hazards and individual 
health outcomes. Specifically, understanding acute health 
outcomes requires the annual follow-up schedules typical of 
existing longitudinal population studies to be supplemented 
by intra-annual data. Capturing the spatial variability in 
climate-related exposures requires data at finer resolutions, 
in key locations, than are currently provided by existing 
meteorological infrastructure. Existing data-collection 
protocols from both domains need to be supplemented by 
data from a series of factorial experimental designs that 
collectively cover the important dimensions of variability in 
exposure and, consequently, health outcomes.

As well as investment in data collection infrastructure there 
is a need for more researchers with the expertise to handle 
the information effectively. Advancing a deep understanding 
of climate-health interactions and, crucially, using this 
understanding to generate policy-relevant and operationally-
relevant research, requires more highly trained – we suggest 
at least to PhD level – experts in the health, climate, 
environmental and statistical sciences.  

6.2. Recommendations
To work towards these ambitions, we identify below a set of 
specific recommendations for activities that the Wellcome 
Trust could undertake.

A metadata analysis is the first step 
in determining the suitability of 
existing health datasets for climate 
analysis. Given the complexity of 
the data required to capture climate-
health effects on different spatial 
and temporal scales, datasets 
which at first appear suitable for 
epidemiological research can transpire 
to be incompatible upon further 
examination. The survey of LPS 
presented in Section 4 provides an 
initial assessment of the potential for 
using existing LPS for climate analysis, 
but a deeper exploration is required, 
which would be greatly assisted by 
a digital platform to visualise key 
metadata.

Below, we list some of the key 
metadata to be collected. Note that, 
although data are often aggregated in 
space and time to achieve adequate 
sample sizes, data collection is 
usually staggered and more precise 
temporal and geo-referencing of 
each observation may sometimes be 
available. 

General attributes

•	 LPS type: cohort, panel, repeated 
cross-section

•	 Are the timing and location of data 
recorded?

•	 Sampling design
•	 Number of participants
•	 Number of sites/study regions

 

Spatio-temporal attributes

•	 Temporal coverage
•	 Frequency of surveillance
•	 Precision of temporal referencing
•	 Timing of surveillance during the 

year
•	 Geographical coverage
•	 Spatial resolution
•	 Precision of geo-referencing

Immediate: Assess Existing Health Datasets For Climate Analysis 

 
The socioeconomic factors that mediate climate’s effects 
on health outcomes are a major gap in current knowledge. 
Whilst we have been unable in this report to investigate the 
social dimension in detail, we believe that an equally high 
level of social science expertise is needed to understand the 
role of socioeconomic factors in mediating climate-health 
pathways and thus to plan interventions at community-
population levels; see Appendix C by Prof Stephen Reicher. 
 
Finally, low-and-middle-income countries (LMICs), which 
mostly fall within the tropics, are simultaneously among the 
most vulnerable to the effects of climate change on health 
and the least able to afford the necessary policy responses. 
Priority should therefore be given to supporting research with 
an LMIC focus. This research can benefit from the higher 
levels of climate predictability (associated with the El Niño 
Southern Oscillation) that are found closer to the equator. 
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Recommendations

1.	 Encourage new consortium-
based approaches that integrate 
climate data and health data 
across wide-ranging geographies 
and are co-designed by experts 
from both domains.

2.	 Engage the disaster risk 
community to develop funding 
opportunities for pilots to explore 
forecast-based surveillance as 

a means of studying the causal 
pathways between extreme 
weather or climate events and 
health outcomes, and to evaluate 
the effectiveness of interventions.

3.	 Advocate to the World 
Meteorological Organisation for 
the inclusion of the health sector 
as a priority user for the services 
of national meteorological 

agencies and propose specific 
meteorological data and services 
requirements needed to address 
climate-health priorities (e.g. in 
urban areas).

1.	 Develop a vision for a Wellcome 
Trust Climate and Health Institute 
with global reach but a particular 
focus on policy-directed research 
in LMIC settings. The INDEPTH 
network would be a useful 
starting point for this activity; 
complementing its health data 
system with an equally rich 

climate data system would create 
a formidable resource for climate-
health research rooted in LMICs.

2.	 Develop a strategy for the 
generation and use of routine 
health information systems to 
capture and analyse real-time 
or near-real-time health data in 
lower income countries.

3.	 Develop the design for a network 
of sentinel sites taking frequent 
health, socio-economic and 
climate measurements across 
representative climatic regions/
exposures and socioeconomic 
contexts, with a view to this 
platform serving a multi-disease 
research and operations agenda.

1.	 Fund proposals on the following 
topics under existing grant and 
fellowship schemes: 
 

a) secondary analyses of existing 
LPS and climate data to develop 
hypotheses and inform the design 
of studies on specific climate-health 
interactions; 
 

b) projects that capitalise on 
opportunities for the integrated 
analysis of data from multiple LPS; 
 

c) development of novel statistical 
and computational methods for 
inferentially robust combined 
analysis of multiple health and 
climate data-sources; 
 

d) projects to support better 
understanding of the indirect drivers 

in climate-health pathways and 
better linkage with relevant data 
types e.g. socio-economic census 
data; 
 

e) projects to construct new 
retrospective cohorts and 
corresponding climate data and 
metrics; 
 

f) projects that engage with national 
health and meteorological agencies 
to enable all relevant data from both 
domains to be harnessed for climate-
health research at local scales. 

2.	 Commission selected LPS consortia 
to consider how they could re-
orient some of their work towards 
climate-health research, engage 
directly with climate data owners 
and scientists and develop specific 

proposals accordingly. Candidates 
could include the Hundred thousand 
Plus Cohorts Consortium, AGRICOH, 
HELIX and the successful bidder 
for the African Population Cohorts 
Consortium.

3.	 Engage in discussion with Brazil 
100M and INPE with a view to 
developing an exemplar real-time 
climate and health surveillance 
system based on country-wide, 
routinely collected health information.

Short term

Medium term

Long term
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Introduction
Climatic processes can affect population health in different 
ways. Extreme climatic events, such as floods or heat-waves, 
can have acute impacts that disproportionately affect low-
latitude countries (Harrington et al, 2016, 2017) and, within 
those countries, disproportionately affect the most vulnerable 
sectors of the population (Green, 2016). Changes in climate 
can also have long-term indirect impacts on health, for 
example through their effects on food production or on the 
geographical range of vector-borne diseases, that are harder 
to spot in the short-term but potentially more profound in 
their consequences for global population health (Thomson 
and Mason, 2019). Furthermore, these consequences extend 
far beyond their increasingly recognised effects on mortality 
(Peng et al, 2011). We believe that in order to gain a deeper 
understanding of present and future climate-related threats 
to human health there is both a need and an opportunity 
to build closer working relationships between two research 
communities: climate scientists who study the physical 
processes that drive the earth’s climate; and epidemiologists 
who conduct longitudinal studies of population health 
outcomes. 

Health scientists typically use data and forecasts/projections 
from climate scientists as unquestioned inputs to health 
modelling, failing to recognise their inherent and often 
unquantifiable uncertainty, the nuances of the different 
types of climate data available and the different methods 
of preparing these data for analysis with health data. There 
is something to be said for reserving the term data in its 
standard statistical usage to refer to observed quantities; 
“data” that are derived from observations, for example raster 
images of model-based predictions, might better be called 
predictions, or products.

 
Climate scientists build products for general use without 
considering the specific aims of the health studies that will 
use these products.

 
Health data are rarely collected in a way that facilitates 
analysis with climate data, and vice versa. In particular, 
careful consideration of the spatial and temporal scales for 
data-collection are critical in both domains, and for practical 
reasons are often incommensurate. 

 
Standard methods of time series analysis require climate 
and health time series to be regularly structured in time, with 
sampling at the particular frequencies relevant to the climate 
event/health outcome of interest. Equally, the required spatial 
resolution for data-collection is context-dependent, as both 
climate and health phenomena typically display variation at a 
range of spatial scales, not all of which are relevant for every 
health-climate research question. 

This report, commissioned by the Wellcome Trust, focuses 
on the feasibility and potential value of marrying climate 
science and longitudinal population health studies (LPS) 
so as better to assess the impacts of short- to long-term 
climatic processes on a variety of health outcomes that 
operate on a range of temporal and spatial scales (e.g. 
extreme weather events, seasonality, interannual variability, 
multi-decadal cycles and long-term trends 30 to 80 years 
into the future). It is intended to be used as a high-level 
guide for two audiences: the Wellcome Trust, to develop its 
overall climate-health research strategy, draft funding calls 
and evaluate proposals; and researchers writing climate and 
health proposals.

Most current research at the intersection of climate and 
population health involves climate and health scientists 
working independently in a chain-like modality. Undesirable 
consequences of this include the following:
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The advancement of new technologies and methods in 
artificial intelligence/data science creates opportunities but 
also risks. Such methods offer efficient means of “mining” 
massive datasets, such as electronic health records, to 
detect associations between variables. They are increasingly 
employed to conduct climate analyses across a range of 
sectors including health. However, in the absence of a strong 
hypothesis regarding the pathway(s) by which climate could 
affect human health, the complexity and high dimensionality 
of health and climate data increase the likelihood of detecting 
spurious associations that fail to address causality (Shmueli, 
2010). Furthermore, the multiple temporal and spatial scales 
of climate variability require an understanding of climate 
science to ensure that epidemiological models either account 
for the full range of climate variability, where data allow or, 
failing this, at least acknowledge their limitations, particularly 
when they are used to inform policy. These considerations 
favour adopting a hypothesis-driven approach to exploring 
climate impacts on data from longitudinal population 
studies (LPS), which in turn emphasises the need to draw 
on a combination of expertise from the health, climate, 
environmental and social sciences (Figure 1). 

 

Figure 1  
Climate, health and society form a 
single, inter-linked system containing 
multi-directional causal pathways.

For these reasons, it is far from straightforward to make 
use of existing LPS and existing climate science products 
fully to understand the role of climate in determining health 
outcomes. Nevertheless, existing LPS should be utilised 
where possible but we should also consider how we 
could modify and/or combine existing studies to achieve 
better temporal and spatial coverage of important health 
outcomes. Making use of existing datasets is important, not 
least because resource constraints are particularly severe 
in LMIC settings where, as noted above, the impacts of 
climate change on population health are likely to be most 
severe. However, we also need to ensure that new studies 
are designed in such a way as to deliver the best possible 
understanding of health-climate interactions.

We note also a wider issue that we have not been able to 
investigate in detail, but highlight as a key priority area for 
research, namely the importance of social factors involved 
in both the causes of climate change and its consequence 
for the health of populations. Figure 1 contrasts the 
conceptual simplicity of the direct causal pathway from 
climate to exposure to health outcome (black arrows) with 
the complexity of interactions involving society at large (red 
arrows). Understanding the direct causal pathway may be 
sufficient for aetiological research but understanding the 
interactions with society is critical to the success or failure 
of particular adaptation/mitigation strategies suggested by 
policy-directed research. 

CLIMATE SOCIETY

EXPOSURE

HEALTH
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The remainder of our report is 
structured as follows: 

In sections 2 and 3 we address the following overarching 
questions:

1.	 What attributes of the climate are important to               
understand for health research?

2.	 What data are required to capture climate exposures 
and their effects on health outcomes?

3.	 What methodological challenges are involved in 
combining climate and health data for research?

 
In Section 2, we describe the key attributes of the climate, 
and climate data, that one must understand in order to 
assess the feasibility of combining longitudinal population 
studies with climate data to address a range of research 
questions relating to climate and health. 

In Section 3 we present a number of challenges (and 
solutions) for effective research at the climate-health 
interface. 

In Section 4 we summarise the results of a survey of 
existing LPS intended to assess the suitability of existing 
datasets for addressing a range of climate-health research 
questions across multiple spatial and temporal scales.

Section 5 is a discussion section, in which we take a 
broader perspective and argue for a multi-scale, systems 
approach to developing a climate-health research and data 
strategy.

In Section 6 we present our conclusions and put forward 
recommendations for activities that the Wellcome Trust 
could engage with in the short, medium and long term. 

Three appendices are attached to this report.  
Appendix A is a list of people we have consulted 
individually while working on this report. We thank all of 
them, and the participants at a virtual workshop organised 
by the Wellcome Trust on 4th August 2021, for taking 
the time to share their insights with us. We apologise in 
advance for any unwitting misrepresentations on our part.
Appendix B is a summary of the climate-health research 
priorities identified by the people we spoke with. We also 
thank Prof Stephen Reicher (University of St Andrews) for 
his initial thoughts on societal issues, which constitute 
Appendix C of our report.
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Climate as a health 
exposure: what attributes 
of climate are important for 
health research?
2.1 Temporal scales of climate
In the context of this report, climate can perhaps best be 
understood as a process that generates the statistics of 
weather. Average seasonal rainfall is a weather statistic that 
measures one aspect of climate; others include the frequency 
of extreme rainfall events in a season, or over a few years. In 
this sense, climate captures the slowly varying parts of the 
climate system, but it is inextricably linked to the weather 
that we experience, which fluctuates from hour to hour and 

from day to day. Health impacts are generally associated 
with variability in weather and climate, which exists on 
multiple timescales or frequencies. These timescales provide 
an indication of the frequency of data required to detect 
the impacts of weather and climate variability on human 
health (Table 1). The tails of the distributions are particularly 
important as extreme events like storm surge, heat waves, 
droughts and floods can have severe consequences for 
human health. These events are similarly associated with 
characteristic durations and spatial extents (Table 2); we 
discuss spatial scales of climate in Section 2.2. 

In most of the world, the most important timescale of climate 
variability is the seasonal cycle, which makes it critically 
important to conduct health surveillance at appropriate and 
consistent times of the year. In the longer term, large swings 
in the prevailing climate occur from year to year as well as 
still slower cycles over multi-decadal (10-30 year) periods. 

Table 1  
Timescales of climate variability and associated data requirements for studying climate-health associations

Timescale of 
variability

Time period 
over which 
variations 
occur 

Frequency of 
health data 
required 

Length of 
climate 
and health 
timeseries 
required for 
analysis

Considerations

Weather

Hours to 
several days

Sub-daily to 
daily

Depends on 
variability in 
weather and 
strength of signal 
in health data. 
Extreme weather 
events require 
longer time series 
to obtain adequate 
sample sizes.

Diurnal weather 
variability means 
that exposure  
data (and 
potentially health 
data for highly 
variable outcomes) 
must be at the 
appropriate time 
of day.

Associations may 
differ in different 
seasons, or during 
different phases of 
climate variability 
(e.g. during ENSO 
events or different 
phases of decadal 
oscillations).

Sub-seasonal Seasonal Multi-decadal Long-term 
trends

1-4 weeks 1-12 months 1-10 years 10-30 years >30 years

Pentads-weekly 1-3 monthly Annual, at the 
same time each 
year

Annual, at the 
same time each 
year

Annual, at the 
same time each 
year

Several years. At least several 
years depending 
on strength of 
seasonal signal 
vs. interannual 
variability.

At least 10 
years, more for 
causal modelling 
depending on 
strength of 
signal.

At least 30 
years, more for 
causal modelling 
depending on 
strength of 
signal (usually 
unfeasible in 
practice).

At least 50-60 
years to detect 
trends. Causal 
modelling of 
trends likely 
unfeasible given 
data availability.

Several years 
required to 
account for 
inter-annual 
variations.

Several years 
required to 
account for 
inter-annual 
variations. 

Causal 
modelling to 
explain seasonal 
variability in 
health data 
would require 
many years of 
sub-annual data 
but average 
seasonal 
cycles could be 
estimated with 
fewer years. 

Seasonality 
means that 
the timing of 
data collected 
during the year 
matters: health 
data must be at 
the appropriate 
time of year 
to capture the 
impacts of 
climate, and 
successive 
years require 
observations at 
the same times 
of year.

Annual data 
needed to avoid 
confounding 
by inter-annual 
variability. 
Frequent 
measurements 
are also needed 
to discern when 
different phases 
begin and end.

More years 
are required to 
detect decadal 
variations in 
regions with 
high interannual 
variability.

Annual data 
needed to avoid 
confounding 
by inter-annual 
variability.

More years 
required to 
detect trends 
in regions with 
high interannual 
and decadal 
variability.

Inter-annual
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Climate-health research can capitalise on these swings 
in climate that expose large areas and multiple regions to 
anomalous meteorological conditions at similar times, driven 
(at least in part) by physical processes in the climate system 
that are predictable to varying degrees. The most important 
physical driver of interannual climate variability is the El 
Niño Southern Oscillation (ENSO), the periodic warming and 
cooling of the eastern and central equatorial Pacific Ocean 
and accompanying changes in atmospheric circulation. An El 
Niño event occurs when there is anomalous warming across 
this region of the Pacific, while a cooling episode is called a 
La Niña event. El Niño events typically start in April/May and 
last 9-12 months, though they can occasionally persist up 
to 2 years. They recur approximately every 3-10 years, but 
this frequency itself has varied over recent decades and even 
over centuries (Thomson and Mason, 2018). The changes 
in atmospheric circulation accompanying El Niño and La 
Niña events result in anomalous rainfall across the tropics, 
particularly but not exclusively in the areas surrounding 
the Pacific Ocean. Less is known about how regional 
temperature is affected by ENSO events, but a measurable 
increase in global average temperature is observed during 
El Niño events, and a cooling is observed during La Niña 
(Thomson and Mason, 2018). 

Natural cross-timescale variability is superimposed over 
a background of rising atmospheric concentrations of 
anthropogenic greenhouse gases and aerosols, which 
translate into background, non-linear trends in climate (Figure 
2). To date, seasonal and interannual variability have dwarfed 
climate change trends in rainfall in much of the world. Long-
term temperature trends are much stronger than rainfall 
trends and are detectable above background variability in 
most regions, but the seasonal and interannual timescales 
remain the dominant source of temperature variability in 
most places. Society experiences the impacts of long-term 
trends via the attendant shorter-term fluctuations in weather 
and climate, so climate change and climate variability are 
inextricably connected. Warming trends alter the baseline, 
and therefore the intensity of heat waves and anomalously 
warm years (Lyon et al, 2017). Long-term trends in sea level 
impinge on coastlines gradually, but the greatest impacts are 
experienced when storm surge occurs on top of this elevated 
base sea level, bringing more intense floods and salinisation 
than previously experienced. Climate change can also 
change the frequency and duration of weather and climate 
events as well as their timing during the year (Seneviratne 
et al, 2021), which can alter health impacts because of the 
seasonal nature of many socioeconomic drivers of health, 
such as employment and food systems.

Figure 2.  
Timescales of variability for global average annual precipitation (A, mm) 
and temperature (B, °c) anomalies. Raw annual averages are shown in 
grey, fitted decadal cycles in black and the long-term trend in red. In (a), 
the horizontal blue lines show 10-year averaged precipitation anomalies 
from 1900-1910 and 1980-1990, illustrating that interannual and multi-
decadal variability can confound trend detection if not accounted for. 
The legends indicate the proportion of total variance (%) in precipitation 
and temperature explained by each timescale (note seasonality is not 
included). Reproduced from Nissan, Ukawuba and Thomson (2021). For 
the methodology and data, see http://iridl.ldeo.columbia.edu/maproom/
global/time_scales/index.html . 

Annual temperature 
Interannual component: 27% 
Trend: 63% 
Decadal variabilitty: 9%

Annual precipitation 
Interannual component: 70% 
Trend: 7% 
Decadal variabilitty: 20%
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Weather /  
climate event Duration Spatial extent

Table 2  
Characteristic durations and 
spatial extents of weather and 
climate events

Tornado Hours, but they move 
quickly so can pass over 
any one location in a very 
short time.

Tens of m to 3 km

Floods 
(riverine, flash, 
coastal)

Hours - days Flash floods: < a few hundred m 

Riverine/coastal floods: < a few 
hundred m inland from coastline 
or river banks.

Strong winds Hours - days Wide variation depending 
on the driving weather 
system / mechanism.

High temperatures /  
heat waves 

< 2 weeks Absolute values vary on small scales 
according to land cover (urban areas 
are hotter) and elevation (high altitudes 
are cooler); temperature anomalies 
correlated over hundreds of km up to 
about 1500 km.

Heavy precipitation Hours to days depending on 
the driving weather system.

Rain occurrence: a few hundred m 
to a few hundred km, depending 
on the driving weather system.

Amount of rain/snow: much less 
spatially correlated.

Tropical storms 
(cyclones & hurricanes 
cause strong winds, 
heavy rain and storm 
surge)

The whole system will last 
several days.

Associated rain and wind are 
experienced for shorter periods 
depending on how quickly the 
storm moves once it makes 
landfall.

Weather varies dramatically 
over small distances within a 
tropical storm.

Drought Months to years Hundreds to thousands of km

Extreme winter 
conditions
(cold, ice, snow,  
wind)

Days to months Varies by parameter
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BRUNEI

Bandar Seri Begawan

PHILIPPINES

Manila

INDONESIA

Jakarta

Singapore

Kuala Lumpur
MALAYSIA

Phnom Penh

Hanoi

CAMBODIA

VIETNAM

120km/h winds

60km/h winds

200 MILES

Gusts up to
260km/h

The path of typhoon Haiyan 
Typhoon Haiyan was a tropical cyclone that affected 
the Philippines in South East Asia in November 2013. 
It was one of the strongest tropical cyclones ever 
recorded with winds of 313 km/h. In some areas, 
281.9 mm of rainfall was recorded, much of which 
fell in under 12 hours. Waves of up to 7 m in height 
battered the coast. The whole system travelled 
approx 4500 km over 8 days (BBC Bitesize).

Nov. 2:

The storm is 
detected as a low-
pressure area in 
Micronesia.

Nov. 4: 

The system is 
upgraded to a 
tropical storm and 
named Haiyan.

Nov. 6: 

It hits Palau and 
parts of Micronesia. 
After growing in 
intensity for days, 
Typhoon Haiyan 
became a Category 
5 storm, with wind 
speeds above 157 
mph.

Nov. 7: 

Haiyan enters the 
Philippines area; 
alerts, preparations, 
and evacuations 
intensify.

Nov. 8: 

At 4:40 a.m., 
Haiyan makes 
landfall in Eastern 
Samar at peak 
capacity. It 
continues to spread 
destruction through 
the Visayas, the 
Philippines’ central 
island group.

Nov. 9: 

The storm moves 
out into the South 
China Sea, heading 
toward Vietnam.

Nov. 10: Haiyan 
makes landfall in 
northeast Vietnam, 
much diminished, 
then disintegrates 
into bands of rain 
over Guanxi, China.

https://www.
britannica.com/
event/Super-
Typhoon-Haiyan
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2.2. Spatial scales of climate 
Spatial variations in climate are driven primarily by 
geography. It follows that in regions with little geographic 
variation, the climate also tends to be fairly homogeneous, 
and vice versa. Specifically, altitude, latitude, land-sea 
contrasts and land-cover differences are the key factors 
driving spatial variations in climate (Thomson and Mason, 
2018). To take high temperatures as an example, major 
differences in heat exposure occur between areas of 
high and low elevation, between the tropics and the 
extra-tropics, between coastal regions and continental 
interiors and between urban centres and rural areas. 
These differences are not simply a matter of different 
average readings on a thermometer (Laaidi et al, 2012) 
but of differences in temporal variation that could alter the 
physiological impact of heat as well as the methods we 
would choose to combat the problem.  
 

Altitude: 
Temperature decreases 
rapidly with altitude at a 
rate of about 1° per 100m. 
Given the sparse network of 
weather stations in much of 
the world, this heterogeneity 
poses a major challenge 
to exposure estimation for 
epidemiological modelling 
in mountainous areas; for 
example, Figure 3 illustrates 
the sparse and very uneven 
distribution of weather 
stations across Kenya. More 
complex, but equally rapid, 
changes in precipitation are 
observed with increasing 
altitude.

Latitude: 
Tropical regions are hotter 
year-round than the extra-
tropics. However, tropical 
countries also experience 
much smaller ranges in 
temperature, both from day 
to day and across the year 
– there is very little seasonal 
variation in temperature 
close to the equator 
(Figure 4). Background 
conditions in the tropics 
are consistently warm, with 
heat waves characterised 
by relatively small increases 
in temperature, perhaps 
accompanied by surges in 
humidity. At higher latitudes 
there are marked seasons, 
and the weather fluctuates 
much more from day to day, 
resulting in heat waves that 
expose people to heat levels 
far outside the comfortable 
background conditions they 
are used to, although the 
absolute temperature during 
heat waves may remain 
below the extremes seen in 
the tropics and sub-tropics.

Land-sea 
contrast: 
The presence of water 
restricts the range of 
temperatures experienced in 
coastal areas and islands, but 
continental interiors can see 
huge swings in temperature.

Land-cover type: 
Differences in land surface 
drive smaller-scale variations 
in temperature between 
large cities and their rural 
surroundings and within cities 
themselves. People who live 
in urban areas are exposed 
to higher temperatures 
than those who do not. The 
difference is observable year-
round, but is most marked at 
night – and hot nights have 
consistently been associated 
with heat-related mortality 
(Laaidi et al, 2012; Rooney et 
al, 1998; Nissan et al, 2017; 
Karl and Knight, 1997).

Major factors driving spatial 
variation in climate. 
As a case study, the text below each driver describes how 
that factor influences heat exposure.  
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The degree of spatial variability in meteorological 
parameters determines the resolution of meteorological 
and health data required to detect relationships between 
climate and health. Temperature can vary by several 
degrees over very short distances because of changes 
in land-cover (cities are hotter than the countryside) 
and altitude (temperature decreases as you climb 
a mountain). For precipitation, the extent of spatial 
correlation depends on the driving weather system. Rain 
and snow can be caused by local heating (convective 
precipitation), which is highly localised and occurs 
year-round in the tropics and during the summer in 
mid-latitudes. Precipitation in the high-latitudes and in 
mid-latitude winters is mostly caused by the large-scale 
movement of air, which produces fronts along which 
precipitation is heavy and widespread (large-scale 
precipitation), as well as pushing air over topography 
to produce rain and snow on the windward sides of 
mountains (orographic precipitation). Precipitation 
amount and intensity are highly variable within rain 
systems (Thomson and Mason, 2019).

Although absolute temperature is very heterogeneous in 
space, temperature anomalies, which can be the more 
relevant parameter for health impacts (Vaidyanathan et 
al, 2016), are fairly uniform over large distances. This 
assumption holds whether we are talking about a heat 
wave that lasts a few days or a particularly hot season. 

Figure 3.  
Density of reporting weather stations in Kenya, with grey shading 
indicating elevation. The orange crosses indicate the locations 
of the weather stations. The left panel shows stations that report 
data to the Global Telecommunication System for inclusion in 
most global data products. The right panel shows operational 
stations that report every day but are not shared with the global 
climate community. Reproduced from Dinku et al (2016)
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The exception is the marked temperature changes observed 
along weather fronts in the extra-tropics, which only last a 
few days. Precipitation anomalies are much more localised 
than temperature anomalies, but their spatial coherence does 
increase at seasonal timescales; if a particular summer is very 
wet locally, it is likely also very wet regionally (Thomson and 
Mason, 2019). 

In general, weather and climate events that last longer tend 
to be spatially more extensive (Table 2). This heuristic can be 
a helpful guide to the spatial resolution of data required to 
detect the health impacts of meteorological events. However, 
it does not tell the whole story because it also depends 
how we choose to define climate exposures (Section 2.3). 
Differences between definitions can significantly affect the 
relevant spatial scale of analysis as well as the frequency 
with which that event is experienced. Furthermore, weather 
systems are usually mobile: clouds move with the wind, so 
small-scale convective showers can affect areas far larger 
than their size; tornadoes can have an extremely small 
diameter but travel at great speed, devastating everything in 
their path. Large storm systems like tropical cyclones contain 
many different types of weather within them, with high 
spatial variability in rainfall, wind intensity and storm surge. 
Nonetheless, some very general rules of thumb are provided 
in Table 2.
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Figure 4.  
Seasonality of heatwaves in areas with exposure estimated from two 
different reanalysis datasets from (a) the US National Oceanic and 
Atmospheric Administration and (b) the European Centre for Medium 
Range Weather Forecasting. Dark green indicates regions that show 
distinct seasonality in heat waves, while light green areas do not 
have this seasonality. Note that the two models do not show the 
same results over southern Africa, Latin America and the southern 
‘Stans. Cream colored areas have low human exposure to heatwaves. 
Reproduced from Coughlan de Perez et al (2018).

Figure 5.  
Timescale decomposition for annual average temperature (top, A & 
B) and accumulated precipitation (bottom, C & D). Each map shows 
the percent of total variance in annual temperature/precipitation 
which can be explained by the long-term trend (left, A & C) and by 
decadal variability (right, B & D). White areas indicate places where 
insufficient data were available for robust analysis. See http://mbell.
maproomdev.iri.columbia.edu/maproom/global/time_scales/index.
html for the methodology, Source: IRI.
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Looking beyond the local climate, there exist macro-scale 
differences in climate between regions of the world. As 
well as disparities in average climatic conditions, spatial 
variations in climate can take the form of differences in 
temporal variability between regions (Figure 5). Climate 
change trends are not occurring uniformly around the 
world: instead, we see marked differences, with some 
regions hardly warming at all while others are heating up 
at alarming rates. Similarly, decadal fluctuations are only a 
minor component of the total variation in climate in much 
of the world, but they play a significant role in others, 
particularly the Sahel (Pomposi, Kushnir and Giannini, 2014). 
Although the maps in Figure 5 are for annual temperature 
and precipitation, in most of the world seasonality is the 
most important timescale of climate variability. Even in the 
tropics, where temperature is broadly consistent year-round, 
precipitation still exhibits distinct seasons that are important 
for understanding the climate’s impact on health.

Modes of climate variability (such as ENSO and the Madden 
Julian Oscillation, a key driver of intra-seasonal climate 
variability in the tropics and extra-tropics) affect the regions 
of the world in different ways, with some areas particularly 
affected while others show little signal at all. Rainfall 
anomalies during ENSO events have complex regional and 
seasonal patterns depending on the large-scale atmospheric 
circulation. The map in Figure 6 depicts the average rainfall 
anomalies over many events, but no two events are the same 
and the changes experienced can differ markedly from these 
averages.
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Figure 6  
Average regional changes in rainfall by season, during 
El Niño (top) and La Niña (bottom) events. 

Source: IRI https://iri.columbia.edu/our-expertise/
climate/enso/
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A dzud occurs when a severe 
winter follows a dry summer, 
making it difficult for the 
country’s livestock to feed. The 
animals, already weakened by 
insufficient summer grazing, 
and unable to reach sparse 
grassland buried under snow 
and ice, risk starving or freezing 
to death. The catastrophic 
dzud of 2010 wiped out as 
many as 11m animals, over 
20% of the country’s total 
population.

(Mongolia’s deadly winters are 
becoming more frequent, The 
Economist 2020)

2.3. From climate to exposure 
Our experience of the climate is through our exposure 
to the elements – primarily temperature, precipitation, 
humidity, wind speed, solar radiation and air pressure. 
All climate and weather exposures, from heat waves to 
monsoons to the harsh Mongolian winters (‘Dzud’), can 
be described using basic meteorological parameters. 
Temperature and precipitation are the most widely 
available variables in meteorological datasets, but other 
measures can be more important for particular health 
impacts. For example, an individual’s heat load and 
consequent risk of heat stress involve far more than just 
temperature: humidity, wind speed and solar radiation 
all contribute strongly. 

Downstream environmental factors, including flooding, 
air quality, wildfire, dust storms, saltwater intrusion and 
ocean acidification, which themselves are driven by 
the climate, can also be directly responsible for health 
impacts. For example, rainfall is a primary driver of 
riverine and flash floods, but the hydrology of the area 
– how water moves through the landscape – ultimately 
determines whether it will flood when it rains, as well 
as where, when and how quickly the flood waters will 
build up. If hydrology were to remain constant, rainfall 
would be the causal driver, but changes in land use like 
urbanisation and deforestation alter the relationship 
between rainfall and flooding, and thus between rainfall 
and health. Similarly, urban air quality is primarily the 
result of emissions of particulate matter but is worsened 
by particular circulation patterns. Finally, the exposures 
that a population experiences in response to a specific 
climate event are inherently uncertain; for example, hot 
and dry conditions promote, but do not inevitably result 
in, wildfires. 

Whether or not meteorological parameters are a 
reasonable proxy for downstream environmental 
exposures is highly dependent on the context. Local 
rainfall, for example, may be predictive of flash 
flooding, but not of river flooding because the rainwater 
flowing into river systems comes from a much wider 
catchment area. Downstream environmental exposures 
are measured using variables that are not available in 
climate datasets and their interpretation for use in health 
research requires domain expertise.
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2.4. Climate data and data products 
There are many types of meteorological data products, 
each with its own set of strengths and drawbacks that 
have to be weighed up when deciding which to use for 
health research. The choice involves trade-offs in precision, 
geographical and temporal coverage, spatial resolution, 
frequency, cost and accessibility. Table 3 lists the main 
types of meteorological data product and highlights some 
of the important considerations relating to their use for 
health research. A more thorough discussion of climate 
data and its uses for health applications is provided by 
Mason et al (2018).

Direct observations from weather stations are considered 
the “ground truth” of meteorological data, but station 
datasets have several deficiencies (Table 3). Chiefly, the 
low density of weather stations in much of the world, 
inconsistent reporting and data quality problems pose 
challenges for climate and health research. Temporal 
inconsistencies in station data make them problematic for 
research on longer timescales and thus quality control by a 
meteorologist or a climatologist is important.

To address this deficiency, a variety of gridded data 
products also exist: some are produced by interpolating 
station data, others blend different data types such as 
station and satellite observations, and a third category are 
produced by dynamical (physics-based) models of the 
climate system. The complete spatial coverage offered 
by gridded data products is attractive, but the resolution 
of the grids is often too low to be useful. Regardless of 
the resolution, the quality of gridded data products in 
regions with few stations is extremely poor. Moreover, 
global products tend to include only a fraction of existing 
weather stations; far more data exist, housed by national 
meteorological services (NMS), which often do not report 
all stations for a variety of reasons (Figure 3, Dinku et al, 
2016). Working with NMS to use the best available data 
can pay dividends, but can be costly as many NMS charge 
for their data. Initiatives that work with NMS to improve 
data availability, access and use are making climate-
health research and surveillance feasible in an increasing 
number of LMICs (Dinku et al, 2018). Satellites provide the 
geographical coverage that station data lack. Products that 
combine satellite data with station observations provide 
some of the most accurate datasets available.
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Table 3  
Characteristics of different types 
of meteorological dataset

Type of dataset Description Characteristics

Station data Parameters: usually total precipitation 
and daily minimum, maximum and/
or average temperature. Other 
parameters available at some stations.

Frequency: monthly accumulations or 
averages; daily data are also available 
from many stations.

Temporal coverage: varies. Most 
stations have fewer than 50 years but 
some have much longer records.

Resolution: huge differences in density 
of stations and consistency of data 
reporting between countries. 

Geographical coverage: stations exist 
in all land areas but stations are most 
sparse in LMICs

Most accurate observations available 
but highly sensitive to position of 
equipment (e.g. shielding by trees, 
buildings etc). 

Data are often incomplete, especially 
during severe weather events and 
in LMICs. Temporal inconsistencies 
occur when stations are moved or 
sensors are changed. 

Data require quality control by a 
meteorologist before use.

Data are usually owned by the 
national meteorological services and 
may not be freely available. Many 
daily datasets are not yet digitised, 
especially in LMICs.

Strengths, weaknesses and 
considerations

Observations 
measured at 
fixed weather 
stations over 
land

Gridded station 
data

Parameters: generally precipitation 
and temperature but other parameters 
may be available. 

Frequency: monthly or daily 
summaries.

Temporal coverage: varies between 
datasets. 

Resolution: varies between datasets. 

Geographical coverage: Global and 
regional products are available from 
different sources.

Very inaccurate in places with low 
density of stations and during periods 
with low data reporting rates. 

Global gridded datasets are suitable 
for large-scale analyses at sub-
continental scales but not for 
estimating local exposures.

National gridded datasets may be 
suitable for national-scale or smaller 
analyses, depending on the density of 
reporting stations included.

Station data 
interpolated 
onto a regular 
grid 

Reanalyses provide gridded predictions of the past weather, 
produced by a weather forecast model fed with observations 
(from stations, weather balloons, ships, buoys and 
satellites, among other sources). They provide predictions 
for a huge range of variables (a significant advantage over 
direct observations, which are often limited to temperature 
and precipitation) and offer the best 3D estimate of the 
circulation of the atmosphere, but they tend to be inaccurate 
for the near-surface variables that are relevant for most 
health impacts. Figure 4, for example, demonstrates the 
disagreement between two different model reanalyses on 
the seasonality of heat waves. Reanalysis data may be more 
useful for air quality, as it is dependent on circulation at 
higher levels of the atmosphere. Improvements have been 
made to the quality of surface variables in some recent 
reanalysis datasets such as ERA5 (Tarek, Brissette and 
Arsenault, 2020) but they remain problematic, particularly in 
data-sparse regions (Gleixner, Demissie and Diro, 2020) and 
their accuracy is often overstated.
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Type of dataset Description Characteristics

Blended 
datasets

Parameters: generally precipitation 
and temperature.

Frequency: monthly or daily 
summaries.

Temporal coverage: varies between 
datasets.

Resolution: varies between datasets.

Geographical coverage: global and 
regional products exist.

Quality is best where station density is 
high, and is usually improved, relative 
to gridded station data, where few 
stations exist.

Strengths, weaknesses and 
considerations

Combined 
datasets 
incorporating 
station and 
satellite data on 
a regular grid

Reanalysis data Parameters: Many meteorological 
parameters are available at surface 
level and throughout the atmosphere.

Frequency: 6-hourly or even hourly.

Temporal coverage: several decades.

Resolution: most current global 
datasets have at least 2° spatial 
resolution, with some much higher; for 
example, ERA5 has 31km resolution 
(Hersbach, et al. 2020). Some national 
reanalysis datasets may have higher 
resolution.

Geographical coverage: global.

Poor accuracy for near-surface 
variables that are often important for 
health impacts, like 2m temperature, 
rainfall and humidity.

Can be useful for air pollution studies 
which require data on atmospheric 
circulation.

Not usually updated in real time.

Best estimate available of the 3D 
circulation of the atmosphere.

Estimates 
of historical 
weather 
conditions 
produced by 
incorporating 
observations 
into a weather 
forecast model

Index datasets Characteristics depend on the index

NINO3.4 index, a measure of the 
ENSO, is a 5-month running mean 
of sea-surface temperatures in a 
particular region of the Pacific Ocean.

All-India Monsoon Rainfall index is 
an annual areal average of rainfall 
across all Indian districts from June-
September.

Index datasets are reliable as they 
have undergone extensive quality 
control.

Indices for key 
large-scale 
modes of 
variability in the 
climate system, 
such as ENSO, 
constructed 
from station 
data

Satellite data Parameters: varies between satellites. 
Can include rainfall and near-surface 
temperature, estimated indirectly, and 
other parameters e.g. NDVI (a measure 
of vegetation).

Frequency: varies, but higher 
frequency data are generally available 
for more recent years.

Temporal coverage: some satellite 
datasets are available from the late 
1970s, others more recently.

Resolution: varies, but higher 
resolution data are generally available 
for more recent years.

Geographical coverage: complete for 
most of the world.

Best for a broad overview rather than 
for precise local data.

Accuracy varies considerably 
according to weather conditions. 

Environmental data are inferred 
indirectly from observations higher 
in the atmosphere, so have to be 
calibrated using field observations. 

Rainfall and near-surface air 
temperature estimates are not very 
accurate. Estimating near-surface air 
temperature from surface temperature 
observations is very complex.

Some data are freely available without 
cost.

Some data are available in real-time.

Environmental 
data estimated 
from satellites
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A variety of models are also run in prediction mode across 
the full range of lead times: weather forecasts predict 
the weather from hours to about a week in advance, 
seasonal forecasts predict the general climate conditions 
expected over the coming months and climate projections 
provide scenarios of how the future climate could evolve 
under a variety of greenhouse gas and aerosol emission 
trajectories. Although climate models are evaluated 
extensively and their limitations are well documented 
in the literature, information about forecast skill is often 
unavailable and complex to interpret. Moreover, because 
forecast evaluation requires adequate samples of past 
forecasts and observations for comparison, our ability 
to quantify prediction skill is vastly superior at shorter 
timescales for which there are ample data available. On 
climate change timescales we actually cannot evaluate 
skill at all and so must rely on evaluating the processes 
in the models instead (for a fuller discussion of how to 
interpret climate change projections see Nissan et al, 
2018; Nissan et al, 2021; Nissan and Conway, 2018). 
Sub-seasonal and multi-annual to decadal predictions 
(2-30 years) are emerging timescales for prediction and 
both are critical lead-times for adaptation. Sub-seasonal 
forecasts are of great interest for early warnings, but as 
skill is limited they are not yet suitable for most practical 
applications. Likewise, decadal predictions are an active 
area of research, and skill is improving, but they are not yet 
operationally available (Smith et al, 2019).

Within all these datasets, a major gap exists at the urban 
scale – a priority for climate-health research given that 55% 
of the world’s population now lives in cities, with this figure 
projected to rise to 68% by 2050 (United Nations, 2018). 
Differences in land cover within cities and between cities 
and their rural surroundings lead to complex microclimates 
in urban areas that cannot be represented by a single 
weather station. Existing meteorological datasets lack the 
spatial resolution to detect these heterogeneities at the 
urban scale. Most cities have only one weather station 
(if they have one at all), usually situated at the airport, 
which can be some distance from the city centre. Monthly 
and seasonal averages and accumulations from a single 
site in the area could be predictive of climate conditions 
in the city itself, but for research on shorter timescales 
exposures in the city cannot be determined accurately 
from sparse station data. This gap poses a particular 
problem for research on heat-health thresholds to inform 
adaptation measures like early warning systems, research 
to determine causal pathways of impact in urban settings 
and for operational disease control programmes that 
rely on environmental surveillance to determine when 
and where to focus resources. Urban flooding is also 
highly heterogeneous, in part due to rainfall patterns, but 
differences in land use, elevation and draining infrastructure 
are also key determinants of local flooding.

Climate and environmental data or model outputs are 
widely used as inputs to epidemiological models, and 
operationally as indicators of environmental suitability 
for certain diseases and health outcomes. It is common 
practice for climate data to be used unquestioningly 
in epidemiological modelling when in fact, as with any 
dataset, climate data and models have errors and 
uncertainties and require expertise for their correct 
interpretation. Failure to recognise the uncertainties in input 
data runs into the well-known errors-in-variables problem, 
the simplest version of which is the following. Suppose 
that an outcome variable Y is related to an input variable 
X by the simple linear regression model, Y = α + βX + Z, 
where Z represents the random variation of Y about the 
true regression line. Suppose however, that we can only 
measure X* = X+W, where W represents measurement 
error in X*, and write the respective variances of X and 
W as σX

2 and σW
2 Then, naïve fitting of the regression 

model estimates not the target parameter β but the 
shrunken parameter β* = β/(1+ σW

2/σX
2), thus under-

estimating the strength of the relationship between Y and 
X. This phenomenon is exacerbated when the degree of 
imprecision in X* is unknown and not easily estimated.
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2.5 Climate metrics for health 
research 
The large mass of available meteorological data products 
descibed in Section 2.4 is a huge resource for research on 
climate and health. However, data products must first be 
processed into covariates for epidemiological modelling that 
reflect aspects of weather and climate that are relevant for 
health impacts. 

It may seem that with only two variables widely available 
(temperature and precipitation) there would be few 
candidates for climate covariates to use in health research, 
but there are infinite ways to summarise temperature 
and precipitation data. Continuous meteorological 
parameters can be recorded as instantaneous values or 
as accumulations, averages, minimum or maximum values 
over a period of time, which in practice is usually twenty-
four hours. The choice makes a material difference because 
there are large variations in weather during the course of the 
day (Figure 7). Temperature has pronounced, predictable 
diurnal cycles, with the largest diurnal range observed in 
areas inland from the coast. Temperature extremes (daily 
minimum or maximum temperature) are more useful than 
average daily temperature for most types of health impact, 
including heat and cold exposure, as well as mosquito-
borne diseases like malaria, where the parasite has critical 
temperature thresholds for survival. The rainfall rate can also 
vary dramatically during the course of one day and daily 
accumulations are generally used for most applications. 
However, some exposures, like flash flooding, are associated 
with peak rainfall intensity, which is estimated from rainfall 
accumulations over short periods, often just a few minutes. 
The appropriate metric may also differ according to the target 
population of the research. For example, several studies 
have shown that hot nights (high minimum temperature) 
are a strong determinant of heat-related mortality among 
the elderly (Laaidi et al, 2012; Burkart et al, 2014), but may 
not be the most important factor in outdoor occupational 
settings, where hot days (high maximum temperature) are 
likely to be a better predictor of heat-related morbidity and 
mortality. 

Figure 7.  
Diurnal variability in 
temperature (grey line) and 
relative humidity (black line). 
Reproduced from Thomson 
and Mason (2018).

For analyses on climate timescales, meteorological 
data must be aggregated into climate metrics. Typically, 
temperature is averaged over monthly or seasonal periods, 
while rainfall is accumulated, and these two simple metrics 
tend to be used most in climate-health studies on longer 
timescales. Monthly data are widely available in climate 
datasets, but they may not be closely related to some health 
outcomes because they cannot capture rapid-onset, short 
duration events like heat waves or flash floods. Events lasting 
a week or more, such as extended cold snaps, might be 
discernible in monthly data if they are particularly extreme. 
For slower-onset exposures like drought, or when health 
impacts are mediated by agriculture, monthly or seasonally 
accumulated rainfall could be appropriate measures. 

However, climate metrics need not be constrained to simple 
averages and accumulations. Event-based metrics are 
more suitable for exploring the health effects of weather 
and climate extremes. Some examples of event-based 
metrics include: binary indicators (e.g. whether maximum 
temperature is greater than a threshold); frequency of hot 
days; frequency of rainy days; date of monsoon onset/
cessation during the year; length of monsoon season; ENSO 
index (e.g. NINO3.4); seasonal total rainfall as a fraction 
of rainy-day frequency; maximum duration of heat wave 
conditions; maximum dry spell duration. On daily timescales, 
event-based metrics are binary indicators (e.g. it is raining 
or it is not raining; there is a heat wave or there is not a heat 
wave; the monsoon has started or it has not), but on longer 
timescales event-based climate metrics capture the statistics 
of weather events and extremes over a period of time. They 
can be expressed as frequencies, durations or even dates, 
if the timing of exposure during the year is important for a 
particular pathway (e.g. date of monsoon onset). 

To construct event-based metrics, we first have to define 
what we mean by an event. How deep do waters have to be 
to constitute a flood? How hot is a heat wave, and for how 
many days/nights in succession? Should drought be defined 
when accumulated rainfall is below average, or below a 
particular amount, and for how long? For some events, 
there are standard definitions used by the meteorological 
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community, but for many there are not. In either case, the 
choice of event definition for use in health research should be 
informed by the health impacts we seek to investigate.

Identifying meteorological thresholds for health impacts 
should be a priority for climate-health research because 
these thresholds are the building blocks for a lot of other 
climate-health research, surveillance and operations (see 
Appendix B). Health-relevant event definitions are needed to 
construct suitable climate metrics for research on seasonal 
and longer timescales, for detection and attribution to 
climate change of the health impacts of extreme events, for 
health early warning systems and for guiding operational 
resource allocations.

Except where hard biological limits exist (e.g. survival 
potential in extreme temperatures) there are no universal 
thresholds. Different demographic groups, or those with 
medical conditions, may experience adverse health effects 
at different levels of exposure than others. Between 
regions, populations are not equally vulnerable to the same 
exposures, because of differences in the socioeconomic and 
ecological contexts that mediate climate-health pathways. 
For temperature, physiological adaptation can also be a 
reason for different thresholds of vulnerability between 
regions as well as during the course of a season or even a 
particular weather or climate event (McGregor et al, 2015). 
The appropriate threshold also depends on its intended use: 
research focused on the most extreme and rare impacts will 
need a higher threshold, while research looking at gradual 
impacts at lower exposure levels will need a more moderate 
threshold. Thresholds can be defined by an absolute value 
(e.g. 2°C) or a value relative to the local climate (e.g. 5th 
percentile of local winter-time temperatures over the last 
30 years) and may need to be continuously or periodically 
adjusted to account for climate change.  
 
Lastly, seasonality in climate means that identifying the 
relevant timing of exposure during the year is critical when 
choosing a climate metric. Timing of exposures during the 
year can mediate their effects on health, particularly for 
vector-borne diseases (as there are seasonal components 
to animal and insect behaviours and population dynamics) 
or in agricultural economies, which depend on the weather 
conditions at particular points in the agricultural calendar. 
The timing of exposures is also important because of lags in 
climate-health associations, which mean that a health impact 
may not be experienced immediately after an initiating 
meteorological exposure. Lags between exposure and 
outcome vary according to the pathway in question, which 
may be mediated by natural or socioeconomic systems 
(Table 4). Depending on the hypothesised pathway of impact, 
covariates may also need to be lagged in order to detect 
associations.

Some sense can be made of this complexity by considering 
two broad categories of climate-health research: hypothesis-
generating, exploratory research and research to test 
a specific hypothesis about a particular climate-health 
pathway.

•	 For hypothesis-generating, exploratory research on 
climate-health associations, monthly or seasonal 
average temperature or accumulated precipitation are an 
appropriate place to start but can be supplemented with 
climate metrics that provide general measures of the 
“weather within climate”, which may be more relevant 

for health impacts. For example, generic metrics could 
include frequencies or intensities of weather extremes, 
either defined relative to the local climatology (e.g. 
as percentile values) or in reference to any existing 
literature on health-relevant thresholds. Climate metrics 
associated with the indirect effects of climate on health 
could also be used, such as via agriculture, tourism or 
vector ecology, where evidence on these connections 
exists within the literature.

•	 When testing a specific hypothesis, the choice of climate 
metric can be informed by the hypothesised pathway. 
Important factors to consider include any meteorological 
thresholds relevant for health impacts, the timing of 
exposure during the year and any lags in the pathway 
of impact (Table 5). For example, temperature extremes 
above 30-32°C can result in declines in wheat yields 
when they occur during particular crop growth stages 
(Arshad et al, 2017). A plausible hypothesis could test 
the effect of heat on nutrition that operates via poor crop 
yields at harvest and spikes in food prices. A suitable 
climate covariate for this pathway could be the number 
of days on which daily maximum temperature exceeds 
crop tolerance levels during the critical window of the 
growing season.
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Combining climate and 
health data for research 
Some of the statements in this section will draw on the 
results of our investigations into current LPS, which we will 
describe in Section 4 below.

The challenges of bringing LPS and climate datasets 
together begin with the differences in the spatial and 
temporal characteristics of these data sources, as 
summarized broadly in Table 4. High-quality meteorological 
datasets generally lack sufficient spatial resolution to 
estimate individual exposures accurately, given the spatial 
heterogeneity in weather and climate. Conversely, the 
infrequent follow-up protocols typical of most longitudinal 
population studies are inadequate to detect the acute 
impacts of climate variability and extreme events (Table 4).

Longitudinal Population Studies Climate data 

Blended datasets

Large number of individuals

Small number of follow-up times

Yearly or longer follow-up intervals

Many variables

Local geographical coverage

Network of monitoring sites or grids

Long time series at each site

High-frequency data: monthly, daily or sub-daily

Small number of variables

Global coverage, but locally sparse

Table 4.  
Typical characteristics of longitudinal 
population studies and climate data

Below, we describe some basic requirements for overlaying 
health and climate datasets to address research across the 
breadth of space and time scales. This exercise is guided by 
two questions, the answers to which depend on the scale of 
analysis concerned:

1.	 What climate data are required to characterise the 
exposure?

2.	 What health data are required to capture the effects of 
that exposure?

In the following discussion, we outline these requirements 
and highlight the situations for which existing datasets 
generally fail to meet them. We also summarise some 
methodological approaches to addressing incommensurate 
spatio-temporal characteristics between datasets.

29Combining climate and health data: challenges and opportunities for longitudinal population studies



3.1. Where, and at what spatial 
resolution, should data be collected?
To capture the effects of weather and climate exposures we 
require both health and meteorological data at resolutions 
comparable to the relevant spatial scale of weather or 
climate variability. 

The requisite spatial resolution depends on both the 
timescale of analysis and the variable of interest. For 
example, on timescales of days, absolute temperatures vary 
over smaller spatial scales than temperature anomalies. 
The spatial resolution of meteorological observational data 
from weather stations and most gridded data products is 
usually inadequate to capture fine-scale gradients in weather 
exposures that are needed, for example, to build effective 
local early warning systems for flooding. Also, most gridded 
data products are derived from a combination of spatially 
sparse direct measurements and modelling assumptions, 
typically without accompanying information on their 
uncertainty limits (see Section 2.4). 

Since climate variables on longer timescales tend to be 
spatially correlated over larger distances (see Section 2.2), 
coarser-resolution meteorological data may be adequate to 
characterize exposures from longer-term climate variability. 
During El Niño or La Niña events a whole region can be 
affected by changes in weather over the course of several 
months. While any individual weather or climate event will 
be limited in temporal and spatial scale, together they can 
expose large areas over the course of the season, which is 
reflected in a greater degree of spatial coherence in seasonal 
averages and other seasonal climate statistics.

Adverse health impacts from climate are often associated 
with exceedance or non-exceedance of a critical threshold. 
Where the climate of a region is very heterogeneous, large-
scale anomalies in climate can disproportionately affect 
the health of people whose local climate hovers close to 
these important thresholds. For instance, malaria cannot 
be transmitted if temperature drops below the minimum 
threshold for parasite development. In mountainous areas, 
the sharp variation of temperature with altitude means that 
populations living at elevations close to this threshold can 
be exposed to malaria during warmer periods, when the 
parasite is able to go through its development cycle at higher 
altitudes (Lyon et al, 2017). Thus, even if abnormally warm 
temperatures are seen across a large area, finer-scale data 
may be needed to capture the exposure and impacts of that 
temperature anomaly on highland populations compared 
with lowland populations. 

Even when fine-scale spatial resolution is needed in principle, 
it may be inefficient to apply this requirement to the whole of 
a study-area. For the efficient detection of effect thresholds, 
the spatial frequency of sampling needs to be high in areas 

close to the critical threshold. One way to address this 
question is through adaptive design (Chipeta et al, 2016). 
An adaptive design is one in which data are collected in 
batches, and the data accrued in early batches inform the 
sampling design for the next batch. For example, when 
designing a study on a blank spatial canvas the first batch 
in an adaptive design will collect data over the whole of the 
study area but later batches may concentrate on sub-areas 
where more information is needed to answer the question of 
primary interest; see Figure 8.

Figure 8.  
Adaptive design. A hypothetical 
threshold effect (solid line) and 
a two-stage adaptive design to 
detect the threshold. Solid dots 
show locations and measured 
values from ten stage 1 samples 
along an east-west transect, 
open circles show locations and 
measured values from a further 
ten stage 2 samples chosen after 
inspection of the stage 1 data.
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3.2. When, and at what temporal 
resolution, should data be collected?
The weather is highly variable on very short timescales. 
A snapshot of the weather taken once a month or every 
season is therefore a very poor indicator of the prevailing 
climate. High-frequency (usually daily) weather station data 
are needed, even for investigations examining the effects 
of slower-moving components of climate variability. For 
example, drought is the result of accumulated precipitation, 
which requires high-frequency measurements to calculate 
because the rainfall rate is so variable. However, though they 
are often spatially sparse, directly measured climate data 
are typically temporally dense. Weather stations routinely 
record directly measured meteorological data at daily or 
sub-daily frequency (Table 4). Longer-term averages or other 
metrics can be constructed from these as required, although 
free access to daily data from weather stations can be a 
challenge in much of the world. 

How frequently health data must be collected and the overall 
temporal coverage required are functions of the type of 
health outcome, the type of weather or climate exposure 
concerned and the lags between the timing of exposure 
and health impacts, which can be substantial (Table 5). The 
key overarching message is that climate-health research 
requires multiple repeated health observations to capture 
the impacts of weather and climate variations over time. 
Sources lacking frequent samples cannot be used to 
address most questions of interest regarding climate and 
health (e.g. Demographic Health Surveys, or longitudinal 
studies with very few follow-ups many years apart). Health 
outcomes that are highly variable over time (e.g. blood 
pressure) will require more frequent sampling to detect any 
changes caused by a meteorological exposure, while slower-
varying health outcomes can be sampled less frequently. 
Analyses exploring health associations with short-term 
weather fluctuations or with seasonal, inter-annual or longer 
timescales of climate variation have corresponding frequency 
requirements, as outlined in broad terms in Table 5. The 
short temporal scales associated with the health effects of 
extreme events like floods, heat waves or droughts present a 
substantial challenge given the infrequent follow-ups typical 
of longitudinal population studies (Table 4). 

In much of the world, the presence of strong and dynamic 
seasonal cycles, both in climate and in some aspects of 
health, mean that the timing of health data collection during 
the year is critical for research questions at all timescales, 
not just for those directly concerned with investigating 
seasonal effects. Furthermore, in many parts of the world 
the magnitude of the seasonal cycle is much larger than 
longer-term variations, including climate change trends. 
Thus seasonality can lead to incorrect estimates of long-
term trends and variability when multi-year health data are 

measured at different points during the seasonal cycle. A 
suitable response to this challenge is a rolling sampling 
design for the collection of health data whereby, for example, 
each cohort member is sampled annually but different sub-
cohorts are sampled each month. When data cannot be 
collected throughout the year, the timing of data collection 
should be informed by plausible hypotheses regarding 
aspects of the climate thought to be relevant for health in 
the local context. For example, to explore the influence of 
flooding on diarrheal disease, data would be needed during 
or shortly after the flood-prone season. Finally, the effects 
of the El Niño Southern Oscillation on regional climate vary 
according to the season (Figure 6), so annual data or data in 
the wrong season may not be useful for exploring the health 
impacts of El Niño or La Niña events.

Studies aimed at understanding the causal mechanisms 
driving health impacts at an individual level are the most 
data-hungry. They need health and climate exposure data to 
be collected at frequencies at least as high as the timeframe 
of the pathways in question, which could vary from hours 
to months (Table 5). For studies of this kind, personal 
monitoring of climate exposure and health biomarkers may 
be needed to address both the spatial and temporal data 
requirements (see below, Section 3.3). To understand the 
steps along these pathways, data would also be required 
on any mediating factors in the climate-health relationship 
relating to the social, economic or ecological contexts. 
Variables with high temporal variance will need more frequent 
observations (e.g. food prices), while those which are more 
stable could be sampled less often (e.g. socioeconomic 
status). Ideally, studies to explore the acute impacts of 
weather or climate events would be planned in advance and 
mobilized at short notice when climate forecasts indicate an 
increased risk, learning from the experience of communities 
skilled at developing early warning systems, particularly the 
operational health and disaster management communities.
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3.3. Accounting for mobility
People are not stationary; they move around outside and 
between indoor and outdoor settings. In some regions, 
temporary (e.g. seasonal) and permanent migration over 
larger distances are also important considerations. To 
account for movement, conventional meteorological 
datasets must be transformed from a set of time series 
at fixed points in space (stations or grids) to a set of 
trajectories corresponding to the movements of individuals 
through exposure space. Closed cohort studies, which 
exclude individuals who move in or out of the study 
area, can avoid these complications if the study area 
is sufficiently small that the climate can be treated as 
homogeneous. However, even within a homogeneous 
climatic environment, indoor and outdoor conditions can 
differ substantially and there is little understanding of 
how the two are related. The association between indoor 
and outdoor conditions will vary according to building 
materials, features (such as whether windows can be 
opened for ventilation) and amenities like heating and air 
conditioning, which can change over time and are likely to 
vary between individuals within the same study. Studies 
are needed to understand indoor temperature and humidity 
exposures during heat and cold extremes in a range of 
building types and geographies.

Fine-scale monitoring of individuals is increasingly feasible. 
For long-running cohort and panel studies, individual 
monitoring can be both expensive and intrusive, but the 
very wide global penetration of mobile phones and, in 
wealthy countries, the growth in use of fitness bracelets 
and smart watches may alleviate these concerns. If such 
methods are not practical for extended time periods, they 
could still be employed for short periods as a complement 
to longer-term studies that rely on traditional climate data 
sources, for example through the use of forecast-based 
surveillance (see Section 3.2). 

3.4. Methodology
As is by now evident, climate data and health outcome 
data are generally not available at the same set of sampling 
units. Further processing or modelling is usually required to 
make the data suitable for analysis using routine statistical 
methods. There is no one-size-fits-all approach; there are 
advantages and disadvantages to all options and climate 
expertise is required to make informed choices about how 
best to prepare the data for analysis with health data. It is 
vital to use a consistent dataset and method across the 
length of the analysis, which poses a particular challenge for 
analyses on longer timescales.

In the spatial dimension, there is a wide range of possible 
data-formats. Figure 9 shows a hypothetical scenario 
containing four datasets in different formats: a point process 
of health events; a raster image of a gridded climate data 
product; direct measurements from a weather station 
network; and socio-economic data for a partition of the 
study-area into administrative districts. 

Figure 9.  
A hypothetical scenario involving four datasets in different 
formats. The red dots are the locations of individual cases of a 
particular disease. The grid squares represent a gridded data-
product. The grey-shaded circles represent measurements 
made at a fixed set of weather stations. The study-area (here, 
western equatorial Africa) is partitioned into sub-areas (here, 
countries) on each of which aggregated socio-economic data 
are available. 

Most currently used methods of dealing with data that are 
collected from incommensurate sets of spatial or temporal 
sampling units operate by transforming the data. For 
example, in the spatial dimension, the modifiable areal unit 
problem (MAUP) arises in human geography when there is a 
need to understand the relationship between two quantities 
for which data covering the whole of the study-area are 
only available as aggregated values derived from different 
partitions of the study-region into sub-areas. Openshaw and 
Taylor (1979) coined the term MAUP and showed empirically 
how the correlation between two aggregated values can be 
highly sensitive to the choice of sub-areas over which to 
aggregate the data.
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With regard to the time dimension, most phenomena of 
scientific interest evolve as a continuous-time process, 
S(t) say, from which a discrete time series of data can be 
extracted either by sampling S(t) at specified set of times 
or aggregating S(t) over a specified set of time-intervals. A 
third format of temporal data is a point process, consisting 
of the actual times at which an event of interest occurs and 
which, by aggregation, can be converted into a time series of 
incident or prevalent counts.

When multiple datasets are recorded at different spatial and/
or temporal resolutions, one approach is to aggregate all 
of them to the coarsest resolution. For example, using this 
approach, if the town in which a subject currently lives is 
recorded at the time of data collection, but only their district 
is known at the time of a flood that is hypothesized to have 
impacted their health, then the analysis can only proceed at 
the district level. A related problem is data-misalignment. For 
example, health data may be available for a town or area with 
no weather stations in it. Options for analysis then include 
using the nearest, or most representative, weather station 
available, interpolating meteorological data from multiple 
nearby stations or using a gridded data-product rather than 
direct meteorological measurements. 

From a statistical perspective, a more principled approach is 
first to specify a model for the process of scientific interest, 
then to specify a joint model for all of the data that arise 
from incomplete or imperfect observation of the process. 
Figure 10 is a schematic representation of this approach 
in its simplest form. The process of scientific interest is the 
causal effect of temperature on the spatially and temporally 
continuous variation in the risk of a particular disease. Health 
outcome data are available from a randomised prevalence 
survey of communities within the study-area. Temperature 
data are recorded at a network of weather stations within 
the study-area that do not align with the locations of the 
communities. 

Figure 10.  
Diagrammatic representation of a hypothetical 
model for the relationship between temperature 
and disease risk. Rectangles and ovals represent 
observed and unobserved spatio-temporally varying 
quantities, respectively. The relationship of interest, 
which in this case is between temperature and 
disease risk, cannot be measured directly.

The diagrammatic representation of Figure 10 translates to 
a set of conditional probability distributions that collectively 
define the joint model for process and data. Expressed in 
mathematical notation, the process model is [T][R|T] where T 
is temperature, R is disease risk, each set of square brackets 
is to be read as “the probability distribution of” and a vertical 
bar denotes conditioning. The two data-models are: [W|T], 
the probability distribution of the weather station data (in 
whatever format they have been collected) conditional on 
the true but unobserved temperature field; and [P|R], the 
probability distribution of the prevalence data conditional 
on the true but unobserved risk field. Inference about the 
probability distribution of scientific interest, [R|T], follows by 
application of Bayes’ theorem. This bare formalism conceals 
a growing body of contemporary statistical methodology that 
allows each data-element to contribute its full information 
content to the problem in hand, rather than being degraded 
by unnecessary aggregation to obtain a neat alignment of 
all data-elements; see, for example, Congdon (2021) or 
Nicholson et al (2022). At least as importantly, each of the 
conditional distributios that collectively define the model 
can benefit from a combination of scientific insight into 
the underlying mechanisms that generate the data, and 
statistical expertise to ensure that modelling assumptions 
are validated empirically and model parameters estimated 
efficiently. Put another way, information is derived from both 
data and scientific knowledge. Sophisticated statistical 
methods of this kind are extremely powerful, but are 
underutilised in both the climate and health domains.
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UNDER 0.49 6.0 AND ABOVE

Research has found a higher 
burden in hot regions with 
intense sugar cane cultivation 
— suggesting that CKD is 
caused by repeated exposure 
to excessive heat.

The chronic kidney disease 
burden mortality rate ratio

Chronic kidney disease linked to 
heat stress
Doctors are predicting that chronic kidney disease linked 
to heat stress could lead to a major health epidemic in 
the next few decades with the potential to affect millions.

Epidemics of chronic kidney disease of uncertain cause 
have emerged in El Salvador and Nicaragua primarily in 
hot, rural regions. Unusually high numbers of agricultural 
workers have begun dying from irreversible kidney 
failure. In other parts of the world with hot temperatures, 
such as in India, a large number of people involved in 
heavy manual labour have started to be affected by this 
disease. Kidneys are particularly sensitive to extreme 
temperatures as they are responsible to maintaining fluid 
balance in the body.

Consensus is emerging that chronic kidney disease of 
uncertain cause should be recognised as a heat stress-
related injury. Subtle damage to worker’s kidneys occurs 
each day while they are in the field and this in turn can 
develop into severe kidney disease or complete renal 
failure over time (The Guardian, 2021).

Map: The chronic kidney disease burden 
mortality rate ratio. The measures of CKD burden 
shown are the proportional mortality odds ratio 
(Nicaragua), mortality ratio (Guatemala, Mexico, 
Costa Rica), and hospital admissions rate ratio (El 
Salvador). Source: BMC Public Health, Hansson, 
E, Mansourian, A, Farnaghi, M et al
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Health-related 
outcome or 
disease

Plausible climate 
pathway(s)

Duration of pathway(s) 
including any lags

Health systems 
(Nissan, 
Ukawuba and 
Thomson, 2021)

Days to weeks 
according to the 
timescale of different 
extreme events.

Many disease control 
programs (e.g. malaria) 
are seasonal.

Relevant timescales 
of variability

Extreme weather and 
climate events can 
disrupt access to 
vulnerable populations, 
impairing routine and 
emergency healthcare 
provision and disease 
control programs.

Considerations

Months (the effects 
of climate exposures 
during the growing 
season are not realized 
until harvest).

Impacts will depend 
on inter-annual climate 
variability, which 
impacts production in 
key seasons.

Economic impacts of 
reduced agricultural 
productivity in some 
countries may lead to 
reduced household 
income, lower 
government revenue 
and decreased 
availability of funding for 
health care.

Chronic kidney 
disease (CKD) 
(Friel et al, 2011)

Heat waves typically 
last 1-10 days. Health 
impacts from heat 
occur during the event 
itself but disease onset 
may require repeated 
exposure via many heat 
events.

Heat waves are 
seasonal in most places 
but not all.

Long-term trends in 
heat wave frequency 
and severity are already 
detectable.

Recurrent heat stress-
causes dehydration 
and osmolarity 
resulting in CKD 
onset and accelerated 
progression.

Length of heat wave 
season is increasing 
with global warming 
–heat waves are 
occurring outside the 
normal (historical) 
summer season.

Epilepsy 
(Sisodiya et al, 
2019; Gulcebi et 
al, 2021)

Heat waves typically 
last 1-10 days and 
health impacts are fairly 
immediate. 

Effects of changes 
in molecular-level 
biochemistry can be 
short-term acute (e.g. 
fatal seizure) or long-
term accumulative (e.g. 
more frequent non-fatal 
seizures)

Heat waves are 
seasonal in most places 
but not all.

Long-term trends in 
heat wave frequency 
and severity are already 
detectable.

Exposure to extreme 
weather events, 
especially heat waves, 
increases risk of fever, 
stress and sleep 
deprivation, any of which 
can precipitate seizures. 

Genetic mutations 
involved in some forms 
of epilepsy code for 
proteins that are highly 
sensitive to ambient 
temperature 

Table 5.  
Durations and relevant timescales of variability for a selection of 
plausible (hypothesised) climate-health pathways
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Health-related 
outcome or 
disease

Plausible climate 
pathway(s)

Duration of pathway(s) 
including any lags

Relevant timescales 
of variability

Cardio-vascular 
disease (CVD) 
(Friel et al, 2011)

Heat waves typically 
last 1-10 days and 
health impacts are 
fairly immediate, but 
recurrent exposure 
could play a role in 
CVD.

Pollution surges likely to 
become more frequent 
in line with heat waves.

High atmospheric 
pressure systems 
associated with heat 
waves increase air 
pollution which directly 
contributes to CVD.

Also occurring over 
background trends in 
air pollution, which will 
be affected by climate 
policies and adaptation. 

Hot and dry conditions 
often occur together. 

Compound events could 
become more likely and 
more severe.

Dry conditions develop 
over weeks to months.

Uplift of dust and 
particulate matter 
enhanced by windy 
conditions occurring 
over a timeframe of 
hours to days.

Lag to impacts are not 
well understood.

Rainfall is seasonal in 
most locations.

Strong rainfall variability 
often exists on inter- to 
multi-annual timescales, 
with ENSO associations 
across much of tropics.

Long-term drying 
trends in places, 
increasing precipitation 
in others. Many trends 
undetectable to date. 
Trend detection is 
complicated by decadal 
variability.

Dry conditions enhance 
air pollution which 
directly contributes to 
CVD.

Days to seasons (dry 
pre-conditions for fire 
develop over months, 
but wildfires are 
triggered during periods 
of hot weather).

Strong interannual 
variability in rainfall 
alters risk of wildfires, 
with ENSO links in many 
places.

Increasing frequency 
and intensity of heat 
waves as the climate 
warms.

Wildfires occur in hot and 
dry places, causing air 
pollution and CVD.

Heat waves typically 
last 1-10 days.

Heat waves are 
seasonal in most places 
but not all.

Long-term trends 
already detectable in 
most locations.

Extreme heat stresses 
the cardiovascular 
system leading to heat 
illness and death.

Length of heat wave 
season is increasing 
with global warming. 

The risk of mortality 
can be worse early 
than late in the season 
due to physiological 
adaptation and seasonal 
behavioural factors 
(Sheridan and Kalkstein, 
2004; Koppe and 
Jendritzky, 2005)

Considerations
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Respiratory 
illness  
(Friel et al, 2011)

General shift towards 
warmer weather 
raises background 
ozone levels across 
the full distribution 
of temperatures and 
timescales.

Heat waves (1-10 days) 
cause surges in ozone 
exposure.

Long-term trends are 
detectable in average 
temperature and in heat 
wave frequency and 
intensity.

Higher temperatures 
associated with an 
increase in tropospheric 
ozone cause respiratory 
illness and exacerbate 
asthma.

Wildfires last hours to 
days.

Dry pre-conditions for 
wildfires develop over 
months.

Strong interannual 
variability with ENSO 
links across the tropics.

Wildfires occurring in 
hot and dry conditions 
cause air pollution and 
respiratory illness.

Health-related 
outcome or 
disease

Plausible climate 
pathway(s)

Duration of pathway(s) 
including any lags

Relevant timescales 
of variability

Mental health 
(Vins et al, 2015)

Hours to weeks 
depending on the 
hazard concerned. 
Flood waters can take 
time to recede. PTSD 
may take time to onset.

Pathways and 
associated lags are not 
well understood.

Many extreme 
events are seasonal. 
Impacts on indirect 
determinants of health 
(e.g. livelihoods, food 
systems) may be 
season-dependent. 
Long-term trends 
occurring in some 
extreme weather event 
characteristics.

Extreme weather events 
have immediate mental 
health impacts through 
displacement, injury, 
death of friends/family 
members, trauma 
-> stress, anxiety, 
depression.

Compound events could 
be important, as could 
successive exposure to 
multiple events.

Drought develops over 
weeks to months. 
Lags between drought 
and full mental health 
impacts could be 
long as takes time for 
socioeconomic effects 
to materialise – likely 
months.

Drought is typically 
seasonal. 

The effect of climate 
exposures on the wider 
economy could depend 
on their timing during 
the year, especially in 
agricultural economies.

Climate (especially 
drought) affects 
the socioeconomic 
determinants of mental 
health (e.g. poverty, 
inequality, community, 
competition for natural 
resources).

Considerations
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Undernutrition/
acute 
malnutrition; 
(many plausible 
pathways exist 
– see Davis, 
Downs and 
Gephart, 2021; 
Fanzo et al, 
2018)

Drought is a slow-
onset hazard that lasts 
several months.

Floods last from days 
up to a couple of 
weeks, depending on 
the driving mechanism, 
but can be months in 
particular locations (e.g. 
Bangladesh).

Heat extremes last 1-10 
days.

Effects take time to 
filter through the food 
system (lags largely 
unknown and highly 
context dependent).

Impacts will depend on 
timing of hazards during 
the agricultural calendar 
(seasonality).

Strong interannual 
variability with drought, 
flood and potentially 
heat linked to ENSO 
in many agricultural 
economies. 

Compound events (e.g. 
heat concurrent with 
drought, or drought 
followed by flood)

Climate shocks and 
stressors (e.g. drought, 
flood, heat, and changes 
in seasonality of normal, 
(non-extreme) climate 
occurrences) affect 
multiple components 
of the food system 
including agricultural 
productivity, supply 
chains and distribution 
networks, affecting 
diet quantity and 
quality via changes 
in the availability and 
affordability of nutritious 
food. Poor diet can also 
lead to CVD.

Health-related 
outcome or 
disease

Plausible climate 
pathway(s)

Duration of pathway(s) 
including any lags

Relevant timescales 
of variability

Months overall.

Heat extremes last 1-10 
days, while drought 
conditions can last 
months. 

Impacts on crop yields 
may be realised months 
after exposure.

Heat waves and drought 
are mostly seasonal. 
Trends in heat wave 
frequency are already 
detectable (Alexander 
et al, 2006; Donat et al, 
2013a, b) Droughts are 
becoming more frequent 
and severe in some 
places (Seneviratne, 
2021).

Heat waves and 
droughts decrease crop 
yields and livestock 
productivity, affecting 
access to high-quality 
diets and decreasing 
nutritional status (Fanzo 
et al, 2018)

Days to weeks, 
depending on storage 
and distribution times.

Weather to seasonal.

Long-term trends in 
humidity (in line with 
temperature increases) 
and in frequencies of 
extreme events will 
increase risks over time.

Hot and damp conditions 
lead to food-borne 
illnesses, e.g. via 
aflatoxin and bacterial 
contamination (Davis, 
Downs and Gephart, 
2021).

Disruption to food 
distribution from extreme 
weather events can 
result in delays and food 
spoiling.

Considerations
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population 
studies
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Longitudinal population 
studies
Wellcome uses the term longitudinal population studies (LPS) 
to include “cohorts, panel surveys and biobanks” (https://
wellcome.org/what-we-do/our-work/longitudinal-population-
studies). 

In a cohort study, a set of individuals who share a common 
characteristic, for example birth date or area of residence, 
are followed up over time, with measurements taken 
periodically on aspects of their health considered relevant to 
the research questions in hand. A cohort is closed if follow-
up is restricted to an initial set of recruits, open if newcomers 
can be recruited over time. 

A panel study is similar in concept to a closed cohort. The 
distinction is that in a panel study recruits are selected to 
span a range of characteristics, for example their birth date 
or area of residence. In the authors’ opinion the distinction 
is largely semantic; a panel is a closed cohort to which 
recruitment from the target population uses a sampling 
design that is stratified by one or more characteristics, 
presumably to guarantee balance across the said 
characteristics. 

A biobank is a repository for biological samples that are 
collected and stored with a view to their being used in 
multiple future research studies; a biobank may or may not 
include multiple samples collected at different times on 
the same individual; UK Biobank (https://www.ukbiobank.
ac.uk/) is an example of a biobank whose design is an open 
cohort with a target recruitment of 500,000 individuals aged 
between 40 and 69 years at recruitment.

Finally, a repeated cross-sectional study is one in which one 
or more groups of individuals are followed up over time, but 
at each follow-up time measurements are taken on a different 
sample within each group. A topical example is the REACT 
study of Covid-19 prevalence UK-wide (Riley et al, 2021; 
see also https://www.imperial.ac.uk/medicine/research-and-
impact/groups/react-study/), in which data are collected 
from residents in each of England’s 315 Lower Tier Local 
Authorities by random sampling at approximately monthly 
intervals.

When discussing the role of LPS for research at the health-
climate interface, an important scientific distinction is 
between aetiological questions concerning an individual’s 
molecular-level responses to particular climate-related 
exposures and policy-relevant questions concerning 
population-level effects. 

4.1. Survey of existing LPS
The number of current individual LPS must run into 
the thousands world-wide. Rather than attempt a 
comprehensive survey, we have searched primarily for 
collaborative activities such as networks or consortia that 
have a wide geographical reach. 
 
Table 6 summarises the results of this search. In this 
table, enrolment start indicates when the “baseline” 
data were collected for the first time, it does not indicate 
whether the cohort is still open or if it is now closed. It 
is difficult to provide this information because a single 
network/consortium usually contains both open and 
closed individual cohorts; similarly, the term variable 
for either enrolment or follow-up refers to variation over 
the individual cohorts within the network. Under the 
georeferencing heading, the stated resolution (region, 
town, house etc...) is the lowest level of spatial resolution 
across all individual studies. 
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Table 6.  
Summary descriptions of some current LPS

Type of  
study

Substantive  
focus

Geographical  
coverage

Enrollment  
start

Follow-up  
interval (years) Georeferencing Size Link

CHPT Collection of 
cohorts 

Etiology of cancer 
and other major 
chronic diseases

12 Developed countries in North 
America and Europe) 1976 - 2012 1 – 5 Unknown 2,45M More

EPIC Prospective 
cohort Cancer and nutrition 10 western European countries 1992 to 1999 3 – 5 Town 521K Mor

ATHLOS Collection of 
cohorts Ageing Global (38 countries) 1992 - 2012 1 – 10 Unknown 444K More

IHCC Consortium  
of LPS Wide-ranging Global  

(110 cohorts in 48 countries) Variable Variable Unknown 52M More

MORGAM Collection of 
cohorts

Cardiovascular 
diseases

9 European countries  
plus Russia and Australia 1982 - 2014 1/3 – 5 Town 367K More

Closer
Access point 
for multiple 

LPS
Wide-ranging UK 1931 - 2013 Variable Unknown 774K More

ALPHA Consortium HIV Sub-Saharan Africa Variable 1 – 2 Household/ 
Village 645K More

INDEPTH

Network 
of health 

surveillance 
systems

Wide-ranging  Africa, Asia and  
Oceania (21 countries) 1961 - 2011 ¼ – 2 Household/ 

Village 4.5M More

ISAAC Multi-centre Asthma Global (105 countries) 1994 - 1995 4 Town 2M More

IALSA Research 
network

Aging and  
dementia Global (38 countries) Variable Variable Unknown 1.4M More

AGRICOH consortium Agricultural  
exposures     Global (13 countries) 1969 - 2013 1 – 3 Unknown 1.3M More

BioS-
HaRE-EU

Biobank 
consortium

Multifactorial  
diseases Europe plus Canada Variable Variable Unknown 1M More

Cosmic Cohort 
consortium Cognitive aging Global (33 countries) 1948 - 2010 Variable Unknown 121K More

HELIX Cohort 
consortium

Environmental 
exposure in early life Europe (5 countries) Variable Variable Town / Mobility 

data 31K More

Here, we describe a selection of existing activities that seem 
to us to offer particular promise as vehicles for investment in 
climate-health research by virtue of their wide geographical 
span and collection of data on a range of health outcomes 
that have a potential connection with climate-related 
exposures. Before doing so, we make a number of general 
observations:

Firstly, a limitation of all of the LPS that we have found is that 
they collect health outcome data using follow-up intervals 
of the order of years rather than months or shorter. This 
restricts the range of climate-health interactions that they can 
investigate; see Section 2.1. 

The above observation notwithstanding, secondary analysis 
of data from existing LPS can be a useful starting point for 
exploratory research, with the potential to lead to closer 
long-term collaborations on specific research questions 
using bespoke study-designs. Existing networks or consortia 
that span long total follow-up periods and extensive 
geographies are likely to be the most useful for this kind of 
research. 

Thirdly, we have found a number of web-sites that gather 
information about multiple LPS and provide searchable 
electronic data catalogues. These include maelstrom 
(https://www.maelstrom-research.org/), Synchros (https://
synchros.eu/), Closer (https://www.closer.ac.uk/) and the 
LMIC LPS Directory (https://ifs.org.uk/tools_and_resources/
longitudinal).

The attractions of investing in a consortium of ongoing 
LPS are that the infrastructure for collection and collation 
of health data is already in place, and the consortium as a 
whole can achieve both a scale and a geographical (and 
hence climatic) reach greater than any single LPS. The major 
challenges facing this approach are the need to engage, 
potentially across multiple countries, with the national or sub-
national agencies that hold climate and health data to secure 
their participation, and to fund infrastructure for the collection 
and curation of more localised climate data to capture the 
small-scale variations in micro-climate, for example between 
rural and urban settings or ambient and indoor exposures, 
that can affect multiple health outcomes but are not captured 
by global-scale climate maps. 

41Combining climate and health data: challenges and opportunities for longitudinal population studies

https://epic.iarc.fr/
http://athlosproject.eu/
https://ihccglobal.org/
https://www.thl.fi/morgam/
https://www.closer.ac.uk/
https://alpha.lshtm.ac.uk/
http://www.indepth-network.org/
http://isaac.auckland.ac.nz/
http://www.ialsa.org/
https://agricoh.iarc.fr/
https://pubmed.ncbi.nlm.nih.gov/24257327/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827845/pdf/1471-2377-13-165.pdf
https://www.projecthelix.eu/
https://www.maelstrom-research.org/
https://synchros.eu/
https://synchros.eu/
https://www.closer.ac.uk/
https://ifs.org.uk/tools_and_resources/longitudinal
https://ifs.org.uk/tools_and_resources/longitudinal


LPS consortia
The International Hundred Thousand Plus Cohort Consortium 
(IHCC, https://ihccglobal.org/) was established in 2018. It 
seeks to bring together the data-resources and intellectual 
strengths of multiple LPS world-wide; as of May 2020 it 
included 110 cohorts spanning 48 countries across all five 
continents (Manolio, Goodhand and Ginsburg, 2020), albeit 
with an understandably greater concentration of members 
in high-income than in low and middle income countries; 
for example, it embraces almost 12 million individual study-
participants in the USA but less than one million Africa-wide 
(Figure 11). The consortium is open to the possibility of re-
directing some of its future activities towards environmentally 
sensitive health outcomes.

The proposed African Population Cohort Consortium (https://
wellcome.org/what-we-do/our-work/longitudinal-population-
studies) presents an opportunity to develop the consortium 
model within a newly established consortium in a region 
of the world that is both under-served by current LPS and 
particularly vulnerable to the effects of climate change on 
human health (Harrington et al, 2016, 2017). 

Electronic health records
Electronic health record (EHR) systems offer the potential to 
harness comprehensive health data from whole populations 
in real-time, rather than from limited samples collected 
periodically. Systems of this kind have the greatest potential 
in countries that operate single, national health services. 
However, to varying degrees in different countries, concerns 
about individual privacy can limit access to EHR data for 
research purposes. Also, reference to “whole populations” is 
somewhat misleading, as even in wealthy countries the most 
disadvantaged sectors of society can experience difficulty 
in accessing health care, and other forms of bias can arise 
from variation in individuals’ or communities’ propensity to 
engage with their national health services. For these reasons, 
considerable value can be added to EHR data by investing 
in relatively small, randomised LPS, perhaps targeted at 
particular sub-populations or particular health outcomes, to 

enable exploitation of the much more extensive EHR data 
whilst correcting for their inherent biases. Nicholson et al 
(2021) give an example of this in the context of the current 
Covid-19 epidemic in the UK, using data from monthly 
randomised prevalence surveys to de-bias prevalence 
estimates derived from routine testing.

EHR systems with national reach are found predominantly, 
but not exclusively, in the wealthiest countries. The 100 
Million Brazilian Cohort (Brazil 100M, https://cidacs.bahia.
fiocruz.br/en/platform/cohort-of-100-million-brazilians/) 
incorporates comprehensive health outcome and other data 
from the more than 100 million Brazilian residents who have 
been in receipt of social benefits, hence predominantly those 
in the poorer half of the country’s overall population in excess 
of 200 million. Individual-level data accrue continuously in 
time and are georeferenced to small-area (typical population 
around 600 people) census units. De-identified research-
quality data-sets are extracted periodically using probabilistic 
linkage methods (Pita et al, 2018); the potential to combine 
these with real-time health outcome and climate data is 
as yet untapped but could be transformative, especially 
if integrated with real-time climate information such as is 
generated by Brazil’s Ministry of Science, Technology and 
Innovations (INPE,  )

Mobile phone technology also presents an opportunity to 
supplement data from randomised studies with much more 
extensive, albeit potentially biased, health outcome data 
accruing in real-time. A second example from the current 
Covid-19 epidemic in the UK is the ZOE Covid-19 Symptom 
App (Menni et al, 2020), whereby participants are invited to 
submit daily symptom reports and, in the event of their being 
classified by an algorithm as a possible Covid-19 case, are 
offered a diagnostic test. Smart-phone-based systems are 
not yet feasible for use in poor countries, but basic mobile 
phone technology has reached very wide penetration even 
in the poorest countries and could form the basis for the 
development of remote triage systems such as the UK’s 
former nationwide NHS Direct service (Munro et al, 2000), 
now replaced by 44 local NHS111 services (Pope et al 2017).

Figure 11.  
Total number of participants in 
IHPCC member cohort studies, 
by country as of February 2020 
(from https://ihccglobal.org/, 
downloaded 9 August 2021).
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National-level data infrastructure 
initiatives
Population research UK (PRUK) is a newly established 
initiative being conducted by Health Data Research UK 
(https://www.hdruk.ac.uk/) on behalf of the UK’s Economic 
and Social Research Council, Medical Research Council 
and the Wellcome Trust. Its declared vision is that “bringing 
studies and data together, PRUK will enable a greater 
understanding of the complex interplay between biological, 
social, economic and environmental determinants of health, 
social and economic outcomes, and address high-impact 
research questions that single studies cannot address alone’’ 
https://www.hdruk.ac.uk/population-research-uk/). It will 
seek to “maximise the use, innovation and benefit from the 
UK’s rich collection of LPS across social and economic, and 
biomedical science.” (HDRUK, 2021). PRUK is therefore 
a large, UK-wide data infrastructure project that aims to 
facilitate cross-LPS collaborative working, rather than to 
initiate substantive research projects in its own right. In this 
sense, it mimics the role that biobanks serve as underpinning 
infrastructure for molecular-level research; see, for example, 
the UK Biobank (https://www.ukbiobank.ac.uk/). The 
prospect of being able to combine cohort, biobank and 
climate data is tantalising but, for the foreseeable future, may 
be confined to high-income-country settings.

The INDEPTH Network
INDEPTH (Sankho and Osman, 2012, http://www.indepth-
network.org/) is a global network of Health and Demographic 
Surveillance Systems (HDSSs) that collect wide-ranging 
longitudinal health and demographic data on populations 
from 56 HDSS sites spread across 21 countries in Africa, 
Asia and Oceania (Figure 12). The main goal of INDEPTH is 
to create a rich and, to some extent, harmonised dataset of 
reliable population-based data on health across many LMICs 
and thereby to foster research aimed at filling knowledge 
gaps in the epidemiology of these countries. Linkage of 
population and health facility data is facilitated by use of the 
Comprehensive Health and Epidemiological Surveillance 

System (CHESS), whose ambition is to “use technological 
solutions to establish an integrated electronic surveillance 
system combining all relevant data sources and allowing for 
appropriate response” (Sankho, 2015). 

Unlike a classic cohort study, an HDSS follows up the entire 
population of its geographical catchment. The population 
monitored at a site varies between 8,000 and 262,000 (Figure 
12) with a total of approximately 4.5 million. Most HDSSs 
(58%) are located in predominantly rural settings, 6% are in 
urban centres and the remaining 36% cover a mix of urban 
and rural areas. Collectively, they span a range of ecological 
zones and collect data on many different health outcomes 
and socio-economic indicators (Figure 13). In all sites, 
data on births, pregnancy outcomes, deaths and migration 
are collected with follow-up intervals between 3 and 24 
months. Additional data on morbidities, vaccination, HIV, 
malaria and non-communicable diseases are also collected 
at some of the sites either routinely or through specific 
embedded research projects. Auxiliary demographic and 
socio-economic variables are also collected, sometimes with 
a coarser temporal resolution. GPS coordinates of either 
the house or the village of the individual are almost always 
available to enable spatial analyses. Although every site 
taken individually usually spans a limited geographic area, 
the whole network covers several climatic and ecological 
zones. A small number of the sites also conduct studies 
related to climate change or were set up specifically to cover 
different climatic areas.

INDEPTH represents a valuable and wide-ranging potential 
source of data for research at the climate-health interface, 
although Hinga, Molyneux and Marsh (2021) note that 
HDSSs “occupy a grey area between research, healthcare 
and public health practice and it is unclear how ethics 
guidance that rely on a research-practice distinction apply to 
HDSSs.” 

Figure 12.  
Geographical coverage of 
the INDEPTH network.
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In this word cloud, the size of each 
word indicates how many HDSS 
collect data on that domain.

The Manhica Health Research 
Centre, established in 1996 
in a rural area of southern 
Mozambique, currently follows 
around 92,000 individuals 
living in approximately  
20,000 enumerated and geo-
positioned households. The 
centre is located opposite the 
Manhica District Hospital.
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The AGRICOH consortium
The distinctive feature of AGRICOH (https://agricoh.iarc.fr/
cohorts/index.php) is its focus on the association between 
agricultural exposures and health outcomes, and especially 
on rare exposures and outcomes for which data pooling 
is particularly beneficial. Its 29 studies span 13 countries 
in both developed and low- and middle-income settings 
(Figure 13). 

The Human Early Life Exposome
The Human Early Life Exposome (HELIX, https://www.
projecthelix.eu/) study is unique among the consortia that 
we have reviewed in its explicit focus on environmental 
exposures and their impact on health in early life. It brings 
together six birth cohort studies, one in each of six European 
countries: France, Greece, Lithuania, Norway, Spain and the 
UK. Its aim is to investigate the interplay between early-life 
environmental exposures, biomolecular markers and child 
health (Maitre et al, 2018). Early life exposure is measured by 
looking at three domains: outdoor exposure (climate, urban, 
environmental and societal factors), individual exposure 
(smoking, diet and physical activity) and an internal domain 
(gene expression, metabolism). Environmental exposures 
were estimated using geospatial models to generate gridded 
data products that that could be linked to existing health 
outcome data. Examples of the environmental exposures 
considered include atmospheric pollutants (NO2, Pm2.5, 
Pm10), vegetation, land surface temperature, population 
density and building density. 

The six cohorts provide data on 31,472 mother-child pairs 
from singleton births between 1999 and 2010. For a subset 
of 1,301 pairs, biomarkers, omics signatures and child 
health outcomes were measured at age 6-11. For this sub-
cohort, accurate data on children’s mobility and commuting 
patterns were collected to allow an accurate estimate of 
outdoor exposures at different locations and for different 
time-activity patterns. Pregnant women were followed-up at 
least once during pregnancy, at birth and then multiple times 
after delivery, the exact frequency of data collection varying 
according to the individual cohort.

The aim of the consortium is to create a harmonised dataset 
to extend the overall geographical coverage and power of 
studies that look at the relationship between multiple types 
of agricultural and environmental exposures and health 
outcomes, with a focus on relatively rare outcomes such as 
certain types of cancer and neurologic and auto-immune 
diseases (Leon et al., 2011). The individual cohorts have a 
broad definition of agricultural exposures. Most of them use 
questionnaires to gather their exposure data. The size of the 
population monitored per country can be as small as 300 
(Uganda and Costa Rica) up to almost 900,000 individuals 
followed up in Norway, with a total population of 1,212,822. 
Biological specimens are also collected in 16 of these 
cohorts.

Figure 13.  
Geographical 
coverage of 
the AGRICOH 
consortium
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Discussion
The multiple spatial and temporal scales of variation in 
climate can affect health and its upstream determinants 
across the full range of eco-epidemiological levels of 
organisation: from the molecular to the individual, community 
and population levels (Figure 14). In general, larger temporal 
and spatial scales of climate may be more likely to affect 
the upper levels of the eco-epidemiological hierarchy, with 
large-scale climate events such as a strong El Niño event 
exposing a whole region and thus affecting population health 
either directly or indirectly. However, one can easily think 
of counter-examples, such as where small-scale weather 
exposures in important agricultural areas could affect the 
health of populations across a wide geographical range 
through their impacts on food supply, distribution or pricing. 
Thus, climate and health is an inherently multi-scale problem, 
cutting across temporal, spatial and eco-epidemiological 
scales. It is also inherently multi-variate and multi-
disciplinary: there are many different climate parameters that 
affect different aspects of health, both directly and indirectly, 
via the socioeconomic, behavioural, entomological, zoonotic 
and environmental factors that determine the health of 
populations. 

Indirect
Macroeconomy, health system 
funding, national policy-making 
across sectors, international trade, 
global climate policy, migration, 
urbanisation

Indirect
Socioeconomic status, local 
economy and employment 
opportunities, livelihoods, social 
cohesion and community networks

Direct
Accidents

Direct
UV exposure, water-borne diseases, 
heat stroke, bacterial/viral growth

Indirect
Personal behaviour, 
housing, sanitation, 

Indirect
Disease control 
programs and 
interventions, health 
system functioning 
and access, 
emergency services

Population

Community

Individual

Molecular/
Cellular

Figure 14. 
Climate’s effects on health across 
eco-epidemiological levels of 
organisation. Climate can either 
affect health directly or indirectly, 
when its impacts are mediated by 
the socioeconomic and natural 
systems that underpin health risk.

Such complexity necessitates a systems approach. No one 
model, discipline or method can tackle the full spread of 
interactions and scales. A systems approach can involve 
bringing together multiple strands of evidence from different 
disciplinary and inter-disciplinary methods and scales 
of analysis to build up an understanding of the system 
as a whole. A whole-system understanding is needed in 
order better to manage uncertainty, identify entry points 
for leverage and weigh up the benefits and potential 
disadvantages or unintended consequences of interventions 
to protect or promote health in a changing climate (Fiksel, 
2017; Ahn et al, 2006). Consistent results from research 
across different climate regions and timescales of weather 
and climate variability can strengthen evidence of climate 
signals in health that are difficult to discern. In most cases, 
if climate is an important driver we would expect to see 
that association across the different timescales of climate 
variability. A systems approach is also a useful way to keep 

Drivers of health outcomes Eco-epidemiological levels of organisation
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sight of the direct and indirect pathways of impact, many of 
which are currently unquantifiable due to a lack of adequate 
data or methods for analysis. Within such a whole-system 
approach, findings from climate-health research can and 
should inform policy-directed research but, as noted in 
Section 1, need to be embedded within a wider multi-
disciplinary framework. Social theory, behavioural science, 
economics and geo-politics all have important roles to play 
in the translation of research findings into public health policy 
and practice. 

Understanding the effects that climate change is already 
having on health and how those impacts may evolve in 
the future is a priority research area (see Appendix B). 
Causal modelling of long-term trends in climate and health 
requires time series spanning several decades, but these 
are unavailable in most of the world, and even when they 
are available there are too many factors at play to avoid 
spurious associations confidently. Research on the role of 
shorter-term climate variability (extreme weather, seasonality 
and inter-annual variability) in driving variation in health 
outcomes (or its drivers) can confirm associations and 
unpack the mechanisms involved. Shorter-term variability 
thus constitutes an important line of evidence in explaining 
the role of climate change as a long-term driver of health. 
Detection and attribution to climate change of the health 
impacts of individual extreme weather and climate events 
is another line of evidence (Ebi et al, 2017). When it comes 
to predicting the future, modelled projections of the health 
impacts of climate change are highly unreliable (Nissan, 
Ukawuba and Thomson, 2018;  Nissan and Conway, 
2018; Nissan et a. 2019), so research which develops an 
understanding of the processes via which climate influences 
health is the best basis from which to conjecture what may 
happen in the future. From this understanding, emerging and 
shifting risks can be managed with the help of environmental 
surveillance and forecasts at shorter, more skilful lead-times.

Research on shorter timescales, from weather events to 
interannual fluctuations, is also needed to determine health-
relevant thresholds and to support planning and evaluation of 
adaptation measures. Some adaptation strategies only have 
to be implemented once, such as retrofitting infrastructure 
to reduce overheating in buildings. However, many other 
interventions will require managing the impacts of weather 
and climate shocks and stressors on health, for example via 
seasonal planning and meteorological early warning systems.

Large-scale climate variability offers a number of 
opportunities to address the climate-health research 
agenda. First, research that spans multiple climate regions 
(for instance, through combining multiple studies in an LPS 
consortium) can potentially circumvent the problem of short 
data series in many parts of the world by sampling a wider 
range of exposures across regions. Second, a major research 
gap exists in our understanding of the indirect pathways 
of climate’s influence on health. Studies can address this 
gap through 1) comparative analyses between regions 
with similar climate exposures but different socioeconomic 
situations and 2) analyses spanning long time periods that 
can explore the role of changing socioeconomic contexts 
over time in mediating health outcomes in one or several 
locations.

An ambitious research agenda for climate and health requires 
a new conceptual model and new analytical methods to 
tackle the different scales of climate variability and their 
impacts on health. Life-course epidemiology (Ben-Shlomo 
and Kuh, 2002; Ben-Shlomo, Cooper and Kuh, 2016) has 
some attributes that may prove useful in this area. In life-
course epidemiology, particular attention is given to the 
timing and sequencing of exposures during an individual’s 
life course and the interrelationships among exposures, both 
directly and indirectly through intermediary variables. This 
framing could offer a means of addressing the repeated, 
cyclical nature of the climate, which exposes people to 
recurring events more often than to one-off incidents. 
Examples of such repeated exposures include the seasonal 
cycle, the extreme rainfall and flooding experienced during 
periodic El Niño events in some regions and the repeated, 
protracted episodes of drought in the Sahel. These repeated 
exposures could interact and combine to influence other 
health drivers through a ‘chain of risks’, a concept already 
espoused within ‘accumulation of risk’ models (Kuh et 
al, 2003), whereby climate shocks can tip people into a 
downward spiral or accelerate a decline in quality of life and 
health by making other adverse outcomes more likely. For 
example, a shock to household income following a failed 
harvest could lead to poor educational attainment and 
reduced socioeconomic status, with consequent effects on 
health. Sustainable development theory has long considered 
the effects of repeated shocks to developmental drivers such 
as livelihoods, housing, access to functioning social systems 
and financial stability, all of which underpin health risk. 
Epidemiologic theory can draw from ways of conceptualising 
climate shocks and stressors in other fields.
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6.1. Conclusions
Were we to design from scratch the data infrastructure to 
underpin a deep investigation of the climate-health system, 
it would not look like existing LPS and climate datasets. 
For acute health outcomes, intra-annual data are needed, 
rather than the (at best) annual follow-up schedules of most 
existing LPS. To capture the spatial variability in exposures, 
climate data are generally needed at finer resolutions (in 
key locations) than existing meteorological infrastructure 
can provide. In our view, a deep understanding of climate-
health interactions would be advanced substantially 
by an additional layer of data from a series of factorial 
experimental designs that collectively cover several key 
dimensions, including (but not necessarily limited to): wealthy 
country vs LMIC settings; within-country socio-economic 
variation; tropical vs temperate climatic zone; urban vs rural 
populations; areas that are or are not impacted by ENSO 
effects; infectious vs vector-borne vs non-communicable 
diseases; small islands and coastal locations vs continental 
interiors. Though global in reach, the density of this network 
of monitoring sites would need to be highly variable, guided 
not by national borders but by climatic or ecological zones. 
More sites are needed in regions where the climate is 
particularly complex, with high spatial heterogeneity caused, 
for example, by altitudinal and land-cover changes. In 
regions with less complex geography, such as large plains 
and deserts, fewer monitoring sites are needed.

This series of sentinel sites could record high frequency 
meteorological and environmental data and sub-annual (e.g. 
monthly or quarterly) health data. If well-designed, such a 
platform could support a multi-disease research agenda and 
would generate knowledge about climate and health across 
the full range of climate timescales, from extreme events, 
sub-seasonal and seasonal patterns to longer-term variability 
and trends. It would support an improved understanding 
of the role of indirect factors in mediating these impacts 
through comparative studies across multiple sites. Crucially 
– and often undervalued – this type of surveillance would 
support operational activities to protect and promote health 
in a changing climate (e.g. through dynamic risk mapping to 
target vector control measures) and to evaluate and improve 
upon interventions. It would also make a critical contribution 
to the formation of hypotheses concerning the mechanistic 
pathways of climate’s impact on health.

Because, in many cases, there are countless potential 
pathways through which climate could affect health, 
detailed mechanistic research is not feasible until there is 
a plausible hypothesis to test, which then dictates the data 
requirements. Data from the sentinel network could then be 
supplemented with in-depth studies to explore these causal 
mechanisms by collecting additional data at higher spatial 
and temporal resolutions as needed, potentially making 
use of mobile technologies to record accurate climate 
exposures as people move around and/or forecast-based 
surveillance to observe how extreme climatic (or downstream 
environmental) events affect health.

Despite the challenges of mismatched characteristics 
and inadequate temporal and spatial coverage, there are 
opportunities to make advances using existing climate 

and health datasets. Secondary analysis of data from 
existing LPS and climate data products has a role to 
play in exploratory analysis, hypothesis formulation and 
identification of the most suitable sites for the design and 
execution of new, confirmatory and in-depth studies. We 
have not found any existing combination of climate and 
health data that is well-suited to answer questions around 
the causal effects of particular aspects of climate on 
particular health outcomes. However, we have identified a 
number of ongoing LPS that we feel could be reoriented 
in this way by supplementing existing data with in-depth, 
hypothesis-driven studies. These additional studies could 
include embedded randomised trials of specific interventions 
and individual exposure monitoring using wearable devices, 
the latter being especially important for understanding the 
differences between indoor and ambient exposure. Our 
survey was necessarily constrained to a sample of LPS and 
there are no doubt many other health datasets available, 
especially in national repositories, that would be useful for 
more localised research and operations.

Underlying all of the specific recommendations below 
is the need for deep engagement between the climate, 
environmental, health and (particularly for policy-directed 
research) social sciences. The continuing growth in the 
availability of massive datasets presents both opportunities 
and threats. The opportunities are obvious, the threats less 
so. One, already mentioned earlier, is the risk of finding 
spurious associations through the use of context-free 
algorithms. Another is that taking data at face value can 
all too easily lead to both climate and health data being 
used inappropriately and without due consideration of their 
inherent uncertainties, many of which may be unquantifiable. 
In the health sciences, there is a need to extend, and 
accelerate, current work on data harmonisation to enable 
the unambiguous merging of ostensibly comparable 
datasets from multiple studies. For example, data on the 
prevalence of a particular disease needs to be accompanied 
by meta-data including: the precise definition of the target 
population; the eligibility and exclusion criteria for individuals 
to be included in the sample; the non-compliance rate and 
what, if any, reasons were given for non-compliance; the 
diagnostic used, and its sensitivity and specificity. On the 
climate data side, there is a need to extend the availability to 
researchers of ground-truth data by engaging with in-country 
data-owners, such as national meteorological services, 
rather than restricting their attention to freely available data 
products (see Figure 3) and to promote the more judicious 
use of climate data products in health research to account 
fully for their uncertainties. We would also hope to see a 
commitment from the meteorological community (through the 
World Meteorological Organisation) to developing the data 
and climate services needed specifically to serve the health 
sector, which has its own requirements separate from other 
sectors.
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We conclude that an ambitious and effective climate-health 
research strategy should: 

•	 be policy-driven, aiming to influence strategies to adapt to 
climate variability and change and mitigate further global 
warming;

•	 adopt a systems approach to tackle the multiple temporal, 
spatial and eco-epidemiological scales of climate-health 
interactions and the indirect pathways by which climate 
drives health outcomes;

•	 develop and support initiatives for the co-production of 
study-design and data collection protocols by health, 
climate, environmental and statistical scientists, as well as 
other relevant disciplines; 

•	 develop the field of climate-health research, recognising 
that multiple disciplines are required to work together in 
a deep and integrated way to address the climate-health 
challenge;

•	 recognise and seek to influence the governance structures 
needed for the proper integration of climate, health, 
socioeconomic and environmental data; 

•	 most ambitiously, establish an international centre of 
excellence populated by health, climate, environmental, 
statistical and social scientists to undertake policy-directed 
research at the climate-health interface with a focus on 
areas of the world (primarily LMICs) that lack the necessary 
resources and whose populations are most vulnerable to 
the health effects of climate change.

6.2. Recommendations
To work towards these ambitions, we identify below a set of 
specific recommendations for activities that the Wellcome 
Trust could undertake.

A metadata analysis is the first step 
in determining the suitability of 
existing health datasets for climate 
analysis. Given the complexity of 
the data required to capture climate-
health effects on different spatial 
and temporal scales, datasets 
which at first appear suitable for 
epidemiological research can transpire 
to be incompatible upon further 
examination. The survey of LPS 
presented in Section 4 provides an 
initial assessment of the potential for 
using existing LPS for climate analysis, 
but a deeper exploration is required, 
which would be greatly assisted by 
a digital platform to visualise key 
metadata.

Below, we list some of the key 
metadata to be collected. Note that, 
although data are often aggregated in 
space and time to achieve adequate 
sample sizes, data collection is 
usually staggered and more precise 
temporal and geo-referencing of 
each observation may sometimes be 
available. 

General attributes

•	 LPS type: cohort, panel, repeated 
cross-section

•	 Are the timing and location of data 
recorded?

•	 Sampling design
•	 Number of participants
•	 Number of sites/study regions

 

Spatio-temporal attributes

•	 Temporal coverage
•	 Frequency of surveillance
•	 Precision of temporal referencing
•	 Timing of surveillance during the 

year
•	 Geographical coverage
•	 Spatial resolution
•	 Precision of geo-referencing

Immediate: Assess Existing Health Datasets For Climate Analysis 
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1.	 Encourage new consortium-
based approaches that integrate 
climate data and health data 
across wide-ranging geographies 
and are co-designed by experts 
from both domains.

2.	 Engage the disaster risk 
community to develop funding 
opportunities for pilots to explore 
forecast-based surveillance as 

a means of studying the causal 
pathways between extreme 
weather or climate events and 
health outcomes, and to evaluate 
the effectiveness of interventions.

3.	 Advocate to the World 
Meteorological Organisation for 
the inclusion of the health sector 
as a priority user for the services 
of national meteorological 

agencies and propose specific 
meteorological data and services 
requirements needed to address 
climate-health priorities (e.g. in 
urban areas).

1.	 Develop a vision for a Wellcome 
Trust Climate and Health Institute 
with global reach but a particular 
focus on policy-directed research 
in LMIC settings. The INDEPTH 
network would be a useful 
starting point for this activity; 
complementing its health data 
system with an equally rich 

climate data system would create 
a formidable resource for climate-
health research rooted in LMICs.

2.	 Develop a strategy for the 
generation and use of routine 
health information systems to 
capture and analyse real-time 
or near-real-time health data in 
lower income countries.

3.	 Develop the design for a network 
of sentinel sites taking frequent 
health, socio-economic and 
climatic measurements across 
representative climatic regions/
exposures and socioeconomic 
contexts, with a view to this 
platform serving a multi-disease 
research and operations agenda.

1.	 Fund proposals on the following 
topics under existing grant and 
fellowship schemes: 
aa) secondary analyses of existing 
LPS and climate data to develop 
hypotheses and inform the design 
of studies on specific climate-health 
interactions; 
 

b) projects that capitalise on 
opportunities for the integrated 
analysis of data from multiple LPS; 
 

c) development of novel statistical 
and computational methods for 
inferentially robust combined 
analysis of multiple health and 
climate data-sources; 
 

d) projects to support better 
understanding of the indirect drivers 
in climate-health pathways and 

better linkage with relevant data 
types e.g. socio-economic census 
data; 
 

e) projects to construct new 
retrospective cohorts and 
corresponding climate data and 
metrics; 
 

f) projects that engage with national 
health and meteorological agencies 
to enable all relevant data from both 
domains to be harnessed for climate-
health research at local scales. 

2.	 Commission selected LPS consortia 
to consider how they could re-orient 
some of their work towards climate-
health research, engage directly with 
climate data owners and scientists 
and develop specific proposals 
accordingly. Candidates include the 

Hundred thousand Plus Cohorts 
Consortium, AGRICOH, HELIX and 
the successful bidder for the African 
Population Cohorts Consortium.

3.	 Engage in discussion with Brazil 
100M and INPE with a view to 
developing an exemplar real-time 
climate and health surveillance 
system based on country-wide, 
routinely collected health information.

Short term

Medium term

Long term
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In preparing this report, we consulted a selection of people 
working at the climate-health nexus and asked them about 
their priorities for research and the challenges they face using 
health and climate data. The participant list was compiled 
from our own contacts, those of the team at the Wellcome 
Trust and those recommended by participants. These 
conversations were not intended as a rigorous research 
gap analysis, but the responses are listed below and we 
include here a brief summary of emerging themes. Overall, 
comments from participants were consistent with, but not 
limited to, those reported in two recent reviews of climate 
and health research (Berrang-Ford et al., 2021; Scheelbeek 
et al., 2021) which found major gaps in evidence from LMICs 
and in research on mental health, undernutrition, maternal 
and child health and adaptation or mitigation options and 
their consequences for health.

Several categories of research activity were identified: 
detecting and understanding associations between climate 
and health; supporting practical interventions and public 
health programmes; detecting the impacts of climate change 
on health that have already occurred and predicting future 
impacts; supporting and evaluating adaptation to climate 
change; how health-risk behaviours contribute to greenhouse 
gas emissions and how climate change mitigation policies 
affect health; methodologies needed to address climate-
health research gaps.

Some common priorities emerged that cut across these 
categories of research. Understanding the role of mediating 
factors in climate-health relationships was repeatedly 
identified, in particular economic factors, how behaviour 
can modify associations, and how climate can affect health 
system functioning. A need to focus on LMIC countries was 
very clearly expressed, as was the dearth of knowledge 
on urban health and the sub-urban scale data needed for 
research and operational risk surveillance. Heat was the most 
frequently mentioned climate exposure and several people 
raised concerns about compound events (e.g. drought 
followed by flooding, or heat in conjunction with wildfire 
and poor air quality). Nutrition and communicable diseases 
(mainly malaria and dengue) were the health outcomes 
that were mentioned most often. Children were the priority 
population group for several participants and pregnant 
women were also mentioned, but it was also clear that we 
do not yet understand which groups are vulnerable to which 
aspects of climate, particularly in LMICs. Research to identify 
thresholds for health impacts was explicitly mentioned by 
some people, especially for early warning systems and 
operational decision-making, but is implicit in other topics 
that arose, such as detection and attribution of the health 
impacts of extreme events to climate change, which requires 
an event definition. Thresholds are needed for a range of 

climate exposures, at different levels of exposure (not just the 
most rare/extreme events), for different health outcomes (not 
just mortality) and for different population groups including 
those with pre-existing conditions. Few people mentioned 
mitigation, but adaptation was a clear priority: what are the 
options for adaptation? are they feasible and affordable? 
how can we evaluate them in practice? and how do we 
ensure that we are adequately prepared for an uncertain 
future?

Research priorities cut across the full range of climate 
timescales (from weather to long-term trends), with several 
people raising predictability of health outcomes across lead-
times from days to seasons. Timescales were not always 
mentioned explicitly by participants, but on closer inspection 
it becomes apparent that the majority of research questions 
require analyses of weather at intra-annual and inter-annual 
timescales. For example, heat thresholds associated with 
health impacts would involve analysis using daily health and 
meteorological data, whereas understanding how Dzud (a 
very severe Mongolian winter) is connected with infectious 
diseases in children would require analysis on interannual 
timescales to sample a sufficient number of winter seasons, 
with particular attention given to the timing during the year 
of health surveillance in children (given the seasonal nature 
of this particular pathway). Although long-term in their 
perspective, research gaps related to climate change also 
span the full range of climate timescales, from detection 
and attribution studies focused on extreme events, to 
predicting the timing of crossing critical health thresholds in 
future decades, an impossible task to accomplish with any 
accuracy (Nissan and Conway, 2018; Nissan et al., 2021). 
Where long-term trend analysis was mentioned, it was 
generally in the context of understanding how background 
trends are affecting the impact of weather events, seasonality 
and interannual variability through shifts in baseline climate 
conditions.

Appendix B  
Emerging research priorities
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Research questions by topic 

Detecting and understanding associations  
between climate and health 
Exploratory research
•	 �Climate effects on waterborne disease
•	 How the health effects of climate impact the functioning 

of society
•	 Climate impacts on ecosystems in the Amazon and 

consequent effects on human health
•	 Environmental conditions as determinants of long-term 

health

Understanding pathways of impact
•	 Impacts of climate on nutrition via pathways other than 

food security
•	 Effects of heating in urban areas on mosquito survival 

and the dynamics of dengue
•	 Climate’s indirect effects on household income and 

behaviour and consequences for vector-borne disease
•	 How is climate linked to seasonal mobility and seasonal 

disease dynamics?
•	 Climate’s role in driving exposure to endocrine-

disrupting chemicals via many hypothesized pathways 
including fetal exposure. 

•	 How does Dzud affect children (specifically height and 
infectious diseases) in Mongolia?

•	 How does heat affect waterborne diseases via 
pathogens in water supplies

•	 How does behaviour modify climate-health 
associations? 

•	 Climate and infectious disease pathways in young 
children 

•	 ENSO effects on cholera (much debate around 
hypothesized pathways)

•	 How does birthday affect health outcomes?
•	 How are humidity and temperature related in different 

contexts?

Practical interventions and health programming 
•	 Predictability of extremes for early warnings on 

interannual, seasonal, sub-seasonal and individual 
extreme event timescales

•	 Associations between ENSO and health
•	 Impacts of climate on delivery and success of 

interventions
•	 Thresholds for health impacts 
•	 Vulnerability to climate of people with pre-existing 

conditions (e.g. HIV & drought; kidney disease & heat)
•	 Understanding people’s perception of climate risk
•	 Risk communication strategies for heat risk in already-

hot regions
•	 Sub-urban scale climate surveillance to support 

operational decision-making for malaria
•	 Impact-based forecasting of infectious diseases
•	 Seasonal heat preparedness
•	 What heat interventions are appropriate in the African 

context, for different vulnerable groups?
•	 What barriers exist that prevent people seeking 

treatment or help during heat waves?
•	 Sub-urban scale heat risk mapping

Thresholds
•	 Thresholds for serious and less severe health impacts 

(morbidity, wellness, occupational health)
•	 Thresholds for impacts on upstream drivers of health 

(e.g. employment prospects and education)
•	 Thresholds for different exposures including both climate 

and downstream environmental exposures (e.g. heat and 
flooding)

•	
Climate change
•	 Detection and attribution to climate change of the health 

impacts of extreme events, for loss & damage and as 
evidence for mitigation policies and action

•	 Emerging health risks, such as new infectious diseases 
•	 Changing disease patterns e.g. interplay of dengue and 

malaria 
•	 Effect of shifting climate baselines on the health impacts 

of climate variability (weather extremes or ENSO)
•	 Expansion/contraction of vector-borne disease regions 

in peripheral zones
•	 Prediction: 

•	 	When will critical health thresholds be crossed?
•	 	What is the feasibility of eradicating malaria by 

2030/2050?
•	 	What are the emerging health risks on a 10-30 year 

lead-time?
•	 How is heat risk changing in terms of seasonality, 

frequency, severity and variability of heat extremes
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Adaptation
•	 What are the limits of adaptability? Could compound 

events serve as analogues?
•	 Evaluations of adaptation measures
•	 How to prepare for new, emerging infectious diseases
•	 Research to support contingency planning for health 

programming under climate change
•	 Identifying adaptation options
•	 Robust planning and preparedness for climate change, 

such as by running pilots to stress-test current programs 
to (for example) investigate the sustainability of more 
frequent early warnings being triggered 

•	 Can we learn from implementation science to close the 
gap between evidence and implementation? 

•	 How can urban planning measures reduce UHI?
•	 Which critical infrastructures that are important for health 

are vulnerable to heat risk?
•	 What adaptation options are available for heat in LMICs?
•	 What legal frameworks are needed to protect people 

during heat waves
•	 Costs of extreme events on healthcare systems
•	 Costs of adaptation options

Mitigation
•	 What are the health impacts of climate change mitigation 

policies?
•	 How do different lifestyles (particularly in LMICs) 

contribute to greenhouse gas emissions?
•	 How do health risk behaviours cluster with greenhouse 

gas emissions?

Methodologies
•	 How can climate adaptation interventions be evaluated?
•	 How can success of heat interventions be evaluated?
•	 How can climate be accounted for routinely in 

evaluations of health programs?
•	 What methods are available to account for the dynamic 

nature of climate-health associations over time, 
including the role of adaptation as a confounder?

•	 How can behavioural responses to climate events 
be accounted for in research on climate-health 
associations?

•	 Methods to deal with poor/incomplete data series
•	 New statistical methods to combine different datasets
•	 How can monitoring, evaluation and learning be 

improved, in particular peer-to-peer learning?
•	 Can life-course epidemiology incorporate environmental 

conditions as a new determinant of long-term health?
•	 What analytical methods can be used to explore how 

climate change interacts with other planetary boundaries 
that drive health outcomes?

•	 What quality control is needed for research on complex 
topics like migration?

Priority variables and contexts for 
research
Exposures:
•	 Heat (mentioned most)
•	 Flooding
•	 Saltwater intrusion
•	 Drought
•	 Compound events: heat+wildfires/air pollution/disasters 

Health outcomes:
•	 Nutrition
•	 Water-borne diseases
•	 Vector-borne diseases – dengue, malaria deaths and 

cases
•	 Endocrine system (via chemical exposure)
•	 Asthma 
•	 Mental health
•	 Obesity
•	 Child development (height)

Mediating factors:
•	 Health systems
•	 Household income
•	 Behavioural responses to climate
•	 Risk perception
•	 Migration
•	 Infrastructure

Populations:
•	 Children
•	 Pregnant women
•	 Which population groups are vulnerable (e.g. people 

vulnerable to heat including migrants, refugees, elderly 
infants, pregnant women, outdoor workers etc.)

 
Geographical settings:
•	 LMIC
•	 Urban: intra-urban and urban vs peri-urban vs rural
•	 Conflict settings
•	 Heat in different climatic zones in Africa
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Appendix C  
Behavioural Science and the Climate 
Emergency
Stephen Reicher (University of St Andrews)

One of the core lessons from the response to the Covid-19 
pandemic has been the need to integrate physical and social 
science – particularly behavioural science – perspectives. 
It is crucial to understand how the virus transmits and what 
mitigates the process of transmission using insights from 
virology, epidemiology, modelling, engineering and other 
disciplines. But this is of little use unless we understand 
how to change people’s behaviours accordingly in order 
to reduce virus spread – whether that be a matter of 
spatially distancing, wearing masks, self-isolating or getting 
vaccinated.

This lesson is of particular importance in responding to the 
climate emergency. Of course, we need to understand the 
antecedents of warming, the consequences of warming and 
the actions necessary to contain warming. But all this is of 
little use unless it can be used to generate effective action at 
multiple distinct levels: individual consumption; institutional 
practices; government policies; coordinated global action.

This gives rise to six sets of behavioural questions:

First, how can individuals be influenced to change their 
patterns of consumption, recognising that this is a matter of 
information and messaging, of opportunity (i.e. having the 
necessary resources) as well as of motivation? In terms of 
motivation, what is the role individual level approaches (use 
of incentives) and group level approaches (developing social 
norms) and how do the two inter-relate?

Second, what is the role of leadership – at community, 
institutional and governmental levels – in promoting climate 
change behaviours? How is trust, as a basis of influence, 
generated and how is it undermined?

Third, what is the basis of climate activism – of people 
acting collectively in order to influence institutional and 
governmental climate policies/practices? What determines 
involvement and what sustains involvement in such 
movements?

Fourth, how can an internationalist perspective be promoted 
in which there is concern for the impact of climate change 
in other countries and support for action to contain it? 
Conversely, how can ‘climate nationalism’ be avoided?

Fifth, what is the basis of opposition to climate change 
action, both at an individual and a collective level? What 
factors give traction to disinformation on the climate 
emergency and what is the most effective way of countering 
such disinformation?

Sixth, what is the role of social inequalities both in terms of 
the impact of the climate emergency and the response to 
it? Are different groups more or less concerned and likely 
to act at an individual level? Are members of these different 
groups more or less likely to participate in climate emergency 
activities – and, if so, why?

This list is not meant to be exhaustive. Moreover, each 
individual question and set of questions is open to further 
elaboration. Nonetheless, a successful outcome of the 
climate emergency depends upon generating positive 
attitudes and active support from the public and hence 
paying as much attention to the dynamics of the public 
response as to the dynamics of climate change itself.
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